

TECHNIQUES AND TOOLS FOR TRUSTWORTHY COMPOSITION
OF PRE-DESIGNED EMBEDDED SOFTWARE COMPONENTS

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

JULY 2012

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2012-188

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office
and is available to the general public, including foreign nationals. Copies may be obtained from the
Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2012-188 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /

STEVEN L. DRAGER RICHARD MICHALAK, Acting Technical Advisor
Work Unit Manager Computing & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUL 2012
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

JUL 2010 – DEC 2011
4. TITLE AND SUBTITLE

TECHNIQUES AND TOOLS FOR TRUSTWORTHY
COMPOSITION OF PRE-DESIGNED EMBEDDED SOFTWARE
COMPONENTS

5a. CONTRACT NUMBER
FA8750-10-1-0206

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
63781D

6. AUTHOR(S)
Sandeep K Shukla, Julien R Ouy, Mahesh Nanjundappa,
Preeti Kumar, Matthew Anderson, Godwin Selvam,
Matthew Kracht, Jasdeep S Malhotra, Neil Murray,
Erik Rosenthal, Andrew Matsusiewicz

5d. PROJECT NUMBER
OCXC

5e. TASK NUMBER
11

5f. WORK UNIT NUMBER
11

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Virginia Polytechnic Institute & State University
Virginia Tech
1880 Pratt Drive STE 2006
Blacksburg VA 24060-6750

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-RI-RS-TR-2012-188
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2012-4032
Date Cleared: 19 Jul 12

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This final report contains the findings from the trustworthy composition of pre-designed software components project.
Since DoD software is often developed at multiple vendor sites, individual components may be verified and delivered to
an integrator -- but the integration might fail because of behavioral incompatibility of the component interfaces. This work
proposed behavioral types of interfaces by extracting the polychronous model from source code, and then using the
theory of polychronous composition to check if the composition satisfied all of the requirements. The computation of
composition properties (type inference) required novel development of a specialized Boolean theory for Prime Implicates,
which provided a huge computational improvement through highly efficient generation of Prime Implicates.

15. SUBJECT TERMS
Software Engineering, Software Producibility, Component-based software design, behavioral types, behavioral type
inference, Polychronous model of computation, Prime Implicates, Boolean Abstraction

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

93

19a. NAME OF RESPONSIBLE PERSON
STEVEN L. DRAGER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

i

Table of Contents

LIST OF FIGURES ... iv
FOREWORD .. v
PREFACE .. vii
ACKNOWLEDGEMENT ... ix

1 SUMMARY .. 1

1.1 MAJOR HIGHLIGHTS .. 1
1.2 DISAPPOINTMENTS ... 1

2 INTRODUCTION .. 2

2.1 MOTIVATION ... 2
2.1.1.1 Impact and Transformative Potential .. 2

2.2 STRUCTURING OF THE REPORTED RESULTS ... 3
2.3 STATEMENT OF WORK FROM THE ORIGINAL PROPOSAL .. 3

3 METHODS, ASSUMPTIONS AND PROCEDURES ... 4

3.1 PROGRAMMING MODEL, AND SYNTHESIS TECHNIQUE ... 4
3.2 BOOLEAN THEORY AND PRIME IMPLICATES .. 5

4 RESULTS AND DISCUSSION ... 7

4.1 DEVELOPMENT OF BEHAVIORAL TYPE FOR A SOFTWARE COMPONENT 7
4.1.1 Development of a theory of type for temporal behavior at the interface of a software
Component .. 7

4.1.1.1 Preliminary Definitions .. 7
4.1.1.2 Compilability of Processes – Endochrony and Weak-Hierarchy 12
4.1.1.3 Non blockage of weak-hierarchic composition ... 13
4.1.1.4 Clock Checking – Isochrony .. 13

4.1.2 Develop methods for behavioral type extraction from MRICDF specification of a
software component .. 16

4.1.2.1 Problems .. 16
4.1.2.2 Solution .. 16
4.1.2.3 Anticipated problems and future work .. 16
4.1.2.4 Extended Report: Develop methods for behavioral type extraction from MRICDF
specification of a software component .. 17
4.1.2.5 Anticipated problems and Future work.. 19

4.1.3 Develop methods for behavioral type extraction from C code 20
4.1.3.1 Work Completed .. 20
4.1.3.2 Anticipated problems and future work .. 20
4.1.3.3 Extended Report: Automatic Conversion of C code to SIGNAL code 20

4.1.3.3.1 C to SSA conversion.. 21
4.1.3.3.2 SSA to SIGNAL conversion.. 21
4.1.3.3.3 SSA Blocks .. 21
4.1.3.3.4 Assignment Statements.. 21

ii

4.1.3.3.5 PHI function .. 21
4.1.3.3.6 Conditional statements .. 22
4.1.3.3.7 Buffered values .. 22
4.1.3.3.8 Code Examples .. 22

4.1.3.3.8.1 If else ... 22
4.1.3.3.8.2 Nested if else ... 24
4.1.3.3.8.3 While loop ... 25

4.1.3.4 Extended Report: Automatic Conversion of C code to SIGNAL code, March 2012
update ... 27

4.1.3.4.1 Introduction ... 27
4.1.3.4.2 SSA To SIGNAL Conversion ... 27
4.1.3.4.3 SSA Blocks .. 27
4.1.3.4.4 PHI function .. 27
4.1.3.4.5 Conditional statements .. 27
4.1.3.4.6 Code Example.. 28

4.2 DEVELOPMENT OF BEHAVIORAL TYPE INFERENCE ALGORITHM AS A PROOF TECHNIQUE FOR
TRUSTWORTHY COMPOSITION ... 30

4.2.1 Reduction of behavioral type inference to Prime Implicate extraction problem. 30
4.2.1.1 Semantic of the problem ... 30

4.2.1.1.1 Polychronous Elements ... 30
4.2.1.1.2 The Process and its logical Interpretations .. 32

4.2.1.2 Clock tree decomposition using Prime Implicate theory .. 33
4.2.1.2.1 Finding the Master trigger of a specification... 34
4.2.1.2.2 Finding sets of partial triggers of a specification .. 35
4.2.1.2.3 Scheduling the threads ... 36

4.2.1.3 Shared Epoch .. 37
4.2.1.4 Distribution of events into threads .. 38
4.2.1.5 Algorithm.. 38

4.2.1.6 Non blockage of weak-hierarchic composition .. 42
4.2.2 Investigate if SAT Modulo Theory (SMT) techniques will refine behavioral Types 42

4.2.2.1 Problems .. 42
4.2.2.2 Investigated Methods ... 43
4.2.2.3 Anticipated problems and future work .. 43
4.2.2.4 Extended Report: Investigate if SAT Modulo Theory (SMT) or other decision
making techniques will refine behavioral Types ... 43
4.2.2.5 SMT based safety property checking ... 43

4.2.2.5.1 Limitations of this approach .. 45
4.2.2.6 Polyhedra based safety property checking ... 45

4.2.2.6.1 Constraint Extraction and Transformation for Polyhedral analysis 48
4.2.2.6.2 Polyhedral Analysis ... 49
4.2.2.6.3 Limitation of Polyhedral libraries .. 50
4.2.2.6.4 Safe code synthesis using Wrapper ... 50

4.3 TOOL DEVELOPMENT WORK .. 51
4.3.1 EmCodeSyn improvement .. 51

4.3.1.1 Simcdf: Simulink models to MRICDF import.. 51
4.3.1.2 Sigcdf: SIGNAL to MRICDF import ... 51

4.3.2 CTS Tool ... 51

iii

4.4 IMPLEMENTATION OF BEHAVIORAL TYPE INTERFERENCE ALGORITHM 51
4.5 DEVELOPMENT OF PRIME IMPLICATE EXTRACTION ALGORITHMS .. 52

4.5.1 Introduction .. 52
4.5.2 Computational Advances ... 52

4.5.2.1 Leaving the Original Algorithm... 52
4.5.2.2 Filters and Search Space Reduction ... 53
4.5.2.3 Decomposition .. 54
4.5.2.4 Dynamic Programming ... 56
4.5.2.5 Graph-Based Analysis of MRICDF Theories ... 57

4.6 CASE STUDY .. 58
4.6.1 Case Study Examples ... 58

4.6.1.1 ArduPilot System Description .. 58
4.6.1.2 Ardupilot Software ... 59
4.6.1.3 Case study examples on Ardupilot ... 60

4.6.2 EmCodeSyn as a Code Generation Tool for an UAV .. 63
4.6.2.1 Introduction .. 63
4.6.2.2 Hardware Components ... 64
4.6.2.2.1 ArdupilotMega (APM) Micro-controller Board .. 64
4.6.2.2.2 IMU Sensor Board ... 64
4.6.2.2.3 Radio Control Transmitter and Receiver ... 65
4.6.2.3 Work Progress .. 66

4.6.3 AutoSAR .. 67
4.6.3.1 System Description ... 67

4.6.3.2 Arctic Core Software ... 67
4.6.3.3 Arctic Core Example .. 68
4.6.3.4 Error Detection ... 68

4.6.4 Results of the Study.. 69

5 SOME PATHS UNEXPLORED – SOME BLIND ALLEYS ... 70

5.1 AFFINE CLOCK RELATION BASED INTERFACE TYPES ... 70
5.2 AUTOSAR PLATFORM MODELING ISSUES ... 70
5.3 ARDUPILOT PLATFORM MODELING ISSUES .. 71

5.3.1 Interface Variable ... 71
5.3.2 Typecasting .. 71
5.3.3 System Calls ... 71
5.3.4 Cyclic Function Calls ... 71
5.3.5 Final Implementation ... 71

6 CONCLUSIONS & RECOMMENDATIONS ... 73

APPENDIX: DISSERTATIONS AND TECHNICAL REPORTS SUPPORTED BY THE
PROJECT ... 74

BIBLIOGRAPHY .. 75

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS ... 80

iv

List of Figures
Figure 1: Process biadder - a SIGNAL implementation .. 10
Figure 2: Control flow and Data flow constraints of process Bi-adder ... 10
Figure 3: Process biadder - a weakly hierarchical implementation ... 13
Figure 4: Isochrony of an Endochronous composition .. 14
Figure 5: Isochrony of a weakly hierarchic composition... 15
Figure 6: Producer-Consumer System ... 17
Figure 7: Producer-Consumer System Translated SIGNAL Specification 18
Figure 8: Producer-Consumer System Behavioral Information .. 19
Figure 9: C to Signal Conversion Steps ... 20
Figure 10: Formal definitions of Dataflow Actors .. 33
Figure 11: Recursive Algorithm for Prime Implicate based sequential code generation 39
Figure 12: Input and True Causual Loop Constraints .. 48
Figure 13: Inequalities and Equations from Input and Loop Constraints 48
Figure 14: (Top) 3D-plot (multiple views) of Polyhedras representing Input and Loop

Constraints. (Bottom) 3D plots of I ∩ L and I - L .. 49
Figure 15: Old vs New pi-trie algorithm .. 53
Figure 16: pi-trie Filtering ... 53
Figure 17: Results of 5 technique combinations for solving the Blackboard problem 55
Figure 18: The Blackboard Problem .. 56
Figure 19: Ardupilot software – module descriptions ... 59
Figure 20: Ardupilot software – functions in main loop.. 60
Figure 21: Case 1 Block Diagram .. 60
Figure 22: Case 1 – Ardupilot Block Diagram .. 61
Figure 23: Case 2 Block Diagram .. 62
Figure 24: ArdupilotMega Micro-controller Board ... 64
Figure 25: IMU Sensor Board.. 65
Figure 26: RC Transmitter Schematic ... 65
Figure 27: RC Transmitter ... 66
Figure 28: RC Receiver ... 66
Figure 29: AutoSAR Microcontroller Modules ... 67
Figure 30: Overview of a Cyclic Dependency ... 69

v

Foreword
About 10 years ago, with Prof. Rajesh Gupta at the University of California at Irvine, we
embarked on a project for hardware model composition at the highest level of abstraction. At that
time, due to the increased complexity of hardware designs and increased size due to the
continuation of Moore’s law, it started becoming extremely hard to design hardware chips in the
old ways using register transfer level modeling directly. Thus transaction level modeling at
various levels of accuracy came into existence, and plenty of new models were being made
available in a new C++ based hardware description language called SystemC. In our project code
named BALBOA, we created a component composition framework such that existing
components can reflect their behavioral types at their interfaces through an introspection
mechanism. Therefore, an integrator of components can choose and combine components to
achieve functionality but on the way get assurance that the composition will not deadlock or will
fail to deliver output signals or receive input signals at the right instant, and thereby make
computational mistakes. After the limited success of BALBOA we embarked on another project
at Virginia Tech for component composition but this time with meta-modeling rather than
reflection. Using meta-data about components (including temporal properties as seen at the
interfaces) we could also provide assurance for composition.

This led us to believe that similar techniques will apply to software composition. However,
software components are not necessarily active components like hardware components. In a way,
all hardware components have their own thread of computation. As clocks tick, they sample their
inputs, compute, store, and produce output, and keep doing this ad infinitum. Since most
hardware is synchronous, the problem is easier because the click provides a synchronization
barrier. For globally asynchronous locally synchronous designs, the complication starts, where
we cannot synchronize the actions of the different components with the help of a single barrier
signal (clock). In software it is even more complex. First, not all software components are active
objects. Some only respond to method calls, but do not actively compute. These passive objects
or components execute their actions in the caller’s thread, and hence are sequentially composed
in the thread of the callers. So the problem there is to determine that if a number of different
callers are executing the code in that component, then they do not fail in synchronization at the
right moments.

However, our interest was more in active components, such that each component has its own
thread of computation, and it only reacts to inputs and acts on other components by producing
outputs. In the absence of a clock to synchronize the moments when inputs should be read or
outputs should be produced, the inputs may not all be read at the same time, and not all outputs
may be produced at the same time. Even during a single iteration of its loop, it may have
conditionals that guard when an input is read, and when an output is produced. This gives rise to
the notion of Polychrony: different inputs and outputs act at different iterations, and thus, if an
interacting component cannot determine when to expect input from another one, and always
expects input at times when the sender is not supposed to produce it, it may have problems of
deadlock, live-lock etc.

If the loop iterations could be synchronized with barrier synchronization, this can be simplified to
some extent but at the cost of performance. Hence one should try to minimize the
synchronization requirements so that synchronizations are only used to prevent data races, and

vi

non-determinism. This prompted us to propose that we can use the notion of Polychrony and its
notion of composition to check for these.

The only known Polychrony implementation was from the ESPRESSO project in France. We
began our own implementation in the form of MRICDF, rather than SIGNAL, in order to have
more control over the code of tools built, and the methodology. However, we have used the terms
SIGNAL and MRICDF often interchangeably in this document.

vii

Preface
We have heard anecdotes about the cost overrun of the F-22 due to the failure of integration of
software components developed and verified by distinct vendors at seven congressional districts.
We never found any documentary evidence to the truthfulness of this anecdote, but it is quite
conceivable to any software engineer who has worked on a project that has more than a million
lines of source code. The decomposition of requirements at the outset of the project and the
agreement on the interfaces often precede the contracting out of various components to multiple
vendors. However, the interfaces that are agreed upon by all the parties usually are static
interfaces. This means that they agree on data types of arguments and results of methods, and
possibly on sizes of variable width data type etc. The interaction diagram at the UML level
capture some of the interactions between components, but more often these are not exhaustive,
and they do not capture all the dynamic behaviors of the components which will be eventually
integrated. This leads to integration failure, and requires redesign of components or at least their
interfaces, leading to cost overruns, and time-to-market delays.

The Software Intensive Systems Producibility initiative of the Office of Secretary of Defense
(OSD) looks for ways to enhance productivity of software designers of safety-critical systems. A
lot of the work in this area focuses on verification and validation (V&V) because 70% of the
resources of sizable software projects are spent on V&V efforts. Therefore, our project tries to
provide a way of carrying out cost-effective V&V for the integration stage. One way to verify
that the integration works would be to first integrate and subject the integrated system to full V &
V effort. But due to the scalability problems of verification tools, this becomes quickly infeasible.

So the effort should be on verifying that the integration works without having to re-verify the
components, and hence only the interactions. The concept of behavioral types comes out of this
idea. One could provide behavioral types of the interfaces in many ways (e.g. state machine
models, temporal logics, etc.), but the issue might be that these all require over-synchronized
integration for these models to compose. We therefore chose the Polychronous model of
interfaces, and leverage theories that already are known to work in practice. However, we found
two problems: (i) besides the single source risks, the only Polychrony implementation was not
indigenous and therefore not always necessarily useful to DoD, and (ii) the theory of Polychrony
was never tested for solving this problem as it was invented for model driven code synthesis, and
hence there were gaps in the theory – especially in scaling issues. So we had to work on
developing our own Polychrony implementation, which we already started one summer at Air
Force Research Laboratory (AFRL) when the PI was a summer faculty visitor at AFRL with Mr.
Steve Drager. However, we needed to develop this theory further to accommodate the needs of
scalable composition checking, as described in the results section.

Overall, this project was a very good learning ground for the advanced model driven software
engineering theory that European projects have worked on for over two decades and the United
States academia did not pay a lot of attention to until very recently. The theories and models of
the French synchronous language community led to tools such as SCADE, which is now a
certified tool used in avionics software synthesis, albeit only a small percentage of the avionics
software at Airbus. It is a triumph of model driven software design, synthesis and verification
research.

viii

We therefore not only brought that technology into the DoD knowledge space, we actually
improved the theory, and we have provided alternative synthesis algorithms. We think that is the
most important contribution of this project.

The practice of compositional design with behavioral interface types, examined at the end of this
project, has not moved past prototyping because we need to partner with a DoD software vendor
to deliver an industry strength software. That is one of the most important failures of this project.

Overall, we think we can build on these results in partnership with a DoD software vendor to
implement the theory and knowledge we have gained in this project.

ix

Acknowledgement
We acknowledge the support of Mr. Steven Drager from the Air Force Research Laboratory
throughout the project. Besides funding this project, his group has continuously provided
feedback and helped us with many different technical and nontechnical issues related to this
project. We also acknowledge the support of Dr. Michael May from the Office of the Secretary of
Defense, Office of the Assistant Secretary of Defense for Research and Engineering
(OASD(R&E)) who has also provided very useful feedback during the semi-annual review
meetings and his site visit to Virginia Tech. Mr. William McKeever from AFRL also provided
various feedback and we are grateful for all the generous help and directions provided by all of
them.

The ESPRESSO research team at the French National Institute of Computer Science and
Automation (INRIA), particularly Jean-Pierre Talpin, has provided valuable advice and feedback
on the use of Polychrony and polychronous model of computation. Jens Brandt from the Quartz
project at the Technical University of Kaiserslautern, Germany also helped in many ways, as the
theme of this project is also of great interest in Europe.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

1 Summary
This section overviews the main topics covered in this project. In order to keep it brief the major
accomplishments of this project, and some disappointments of the project, are listed but not
described here. Further details will be provided in the subsequent sections.

1.1 Major Highlights
• New Methodology for Compatibility Checking between separately developed components
• Prime Implicate-based algorithm for behavioral compatibility checking
• Improvement of the Embedded Code Synthesis (EmCodeSyn) tool to extract behavioral

types, transform Multi-Rate Instantaneous Channel Connected Data-Flow Actor Model
(MRICDF) code to Signal

• C-to-SIGNAL extraction tool implementation to extract behavioral types from C-based
components

• Two Case studies (ArduPilot, AutoSar)
• New Improved algorithms for Prime Implicate Generation
• Faster Prime Implicate Generation by Filtering and Decomposition
• Graph based Heuristic for Epoch Calculus with incremental algorithm

1.2 Disappointments
• The project lasted only 18 months. It takes about a year to hire and train a postdoctoral

fellow. By the time he was becoming productive, the contract was over. More advances
could have been made if the postdoctoral personnel were already trained in the specific
area of polychronous modeling and synthesis.

• The project ended before it was at a stage where it could be transferred to a DoD software
vendor for creating a robust tool. Transition to a DoD vendor is in the works.

• Expressing interface behaviors that depend on numeric ratios (e.g., one input comes every
three times another input comes) is harder to capture in the standard polychronous model
(it is possible by modeling a counter but the model gets large). The intent was to extend
this developed theory to polychronous models’ affine clocks to make more efficient
behavioral types, but the time frame did not allow this.

• The task to verify if regular expression subsumption could be used for simple interfaces
was not pursued long enough to achieve results.

• The case studies of ArduPilot and Autosar platforms are not yet 100% complete. Only
selected parts of the platforms were modeled in Polychrony (albeit nontrivial percentage)
and while experimentation with composition and error injection was achieved the goal of
100 % coverage was not achieved.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

2 Introduction
2.1 Motivation
Building large mission critical software systems often requires use of software components
designed by multiple vendors or by distinct groups within a single organization. This allows for
concurrent engineering and reuse of existing components, thereby reducing system development
time, and cost. Combining independently developed software components to create trustworthy
software systems, even when the components are pre-verified for correct functionality, is a
formidable challenge. This is especially true of safety-critical applications, which require a much
higher level of confidence in their correctness and reliability than other kinds of applications. A
common practice in the United States is to use tools such as MATLAB/Simulink or Labview to
create simulation models followed by either hand translation or code generation from these
models. However, these modeling languages are not endowed with proper formal semantics, and
the generated code needs thorough (and expensive!) verification before certification. Formal
methods provide a framework for transforming this practice to one of generation of provably
correct software. However, even when the individual components are synthesized with such a
correct-by-construction methodology, the various information items obtained during such
synthesis/compilation are not usually exported with the component, resulting in loss of
information (such as temporal behavior at the interface of the components) available in the
original formal specification of the components. Larger software systems are constructed by
composing these components from a library. Due to the loss of information one often requires
reverse engineering of the components to reconstruct that crucial information, some of which
cannot always be recovered. Even though the static data-types of the variables and the methods at
the component interfaces (in strongly typed languages) provide type correctness of a
composition, for concurrent reactive software, mismatches in temporal behaviors of an output
variable at the interface of one component, and that of an input variable of another component,
either demands to be bridged by intervening protocols, or they must not be composed. In order to
extend a correct-by-construction technique for component synthesis to the problem of safe
composition, one needs to also export relevant information created during the synthesis process
as behavioral types of the components. This project aimed at developing the structure of such
behavioral types, and methods for safely composing pre-synthesized components endowed with
behavioral types. Novel techniques and algorithms based on computing Prime Implicates for
propositional Boolean theories and Boolean Theories with Presburger arithmetic were also
developed to address the challenges of component composition leading to a correct-by-
construction composition technique.

2.1.1.1 Impact and Transformative Potential
This project brought together experts from formal specification and specification-driven
synthesis, and from automated deduction and prime implicate computation, to solve an important
problem of trustworthy large scale mission critical software development. Interaction with the
U.S. Air Force Research Laboratory, Boeing, and Lockheed Martin indicates that embedded
software is mostly programmed manually. Even when synthesized, the code is not provably
correct, and expensive verification is required. Appropriate formalism is rarely used, and cost-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

overruns and delays in final release, for example, in the production of the F-22, are common.
This research has the potential to significantly improve the reliability of their software
development processes while substantially reducing costs.

2.2 Structuring of the Reported Results
This report details the work accomplished in the project and describes the work done in moderate
detail. For the convenience of the reader, the sections of this report are numbered based on the
section numbers in the original proposal where the tasks were described at the inception of the
project.

2.3 Statement of Work from the Original Proposal
4.1. Development of Behavioral Type for Software Components

4.1.1. Develop a theory of type for temporal behavior at the interface of software
Components

4.1.2. Develop methods for behavioral type extraction from MRICDF specification of a
software component

4.1.3. Develop methods for behavioral type extraction from C code
4.2. Development of Behavioral Type Inference Algorithm as a proof technique for

Trustworthy composition
4.2.1. Reduction of behavioral type inference to Prime Implicate extraction problem

4.2.1.1. Investigate if SAT Modulo Theory (SMT) techniques will refine
behavioral Types

4.3. Implementation of Behavioral type extraction algorithm in EmCodeSyn Tool
4.3.1. Implementation of the type extraction from MRICDF models into EmCodeSyn

Tool
4.3.2. Possible attempt to automate the extraction of type from C code

4.4. Implementation of Behavioral type inference algorithm
4.4.1. Use Prime Implicate extraction tools for type inference implementation within

EmCodeSyn
4.5. Development of Prime Implicate extraction algorithms

4.5.1. Tuning current Murray-Rosenthal Algorithm to only produce certain specific kind
of prime implicates rather than all, thus reducing time required (In particular unitary
positive prime implicates)

4.5.2. Developing an incremental pi-trie algorithm for prime implicates such that every
subsequent iteration of the prime implicate extraction will not require building a
completely new pi-trie from scratch, thus reducing time requirement

4.5.3. Development of interactive prime implicate computing algorithm (user provides
hints from the structure of the software specification as to what might be possible
prime implicate which may be easy for user to guess from the MRICDF)

4.6. Case Study
4.6.1. Example from Virginia Tech Unmanned Vehicle Control team will be considered

as demonstration software on which the composition technique will be on going

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

3 Methods, Assumptions and Procedures
This section provides some background information on the methods and techniques the research
is based on.

3.1 Programming Model, and Synthesis Technique
In the recent past, the group has developed a programming model called Multi-Rate
Instantaneous Channel Connected Dataflow Actor Model [1, 2, 3, 4], to capture the specification
of a reactive embedded software. A visual specification and component code synthesis tool called
EmCodeSyn [2] was also developed which accepts MRICDF specifications in visual or textual
form, and produces C-code that is correct-by-construction with respect to its MRICDF
specification. Similar to Esterel [18], Lustre [19], and SIGNAL [6], the model of computation of
MRICDF is based on the synchrony hypothesis [20], which provides a suitable abstraction from
computation and communication time, and allows one to focus on the dataflow and computation
functionality of the required software. Almost all of these formalisms with the exception of
MRICDF are developed in Europe. Airbus [24], Renault, and other European avionics and
automotive companies claim to generate a large percentage of their control software using these
formal approaches. Even though they have been successful in developing modules through these
methodologies, for composition of modules they use an over simplified composition model based
on a Time-Triggered Architecture [17]. This requires that each component itself be time triggered
leading to a number of optimality problems as pointed out in [1, 4]. The semantics of MRICDF is
not time triggered but rather event triggered, leading to more optimal code synthesis [1]. Time
triggered composition has another problem other than optimality. It requires precise clock
synchronization which results in a large overhead. It would be convenient to achieve both
optimal implementation of individual components and avoidance of the overhead of time
synchronization over a distributed platform. Therefore, constructing large software systems from
components synthesized with the proposed tool is much more challenging, but the benefits
outweigh these difficulties as will be addressed in this project.

The programming model of MRICDF is that of a collection of concurrent processes described by
data flow relations on infinite streams of data values.1 The synchronization requirements between
these streams are expressed either implicitly by the data flow relations or by explicit constraints.
When sequential embedded software is to be synthesized, both data flow relations —
computation — and synchronization constraints — control — must be considered. This is the
crux of the compilation/synthesis process for MRICDF. This programming model is more
suitable for reactive systems compared to other specification models such as temporal logics,
composition of automata (such as I/O Automata) etc., because it abstracts away timing issues but
most importantly, it makes specification of synchronization between concurrent activities within
each component much easier than those other methods. The expression of synchronization
between concurrently acting behaviors within a system is a major source of errors (deadlocks,
live-locks, violation of mutual exclusion etc.) in other formalisms.

1Most embedded applications work on infinite streams of data.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

Given a specification (visual or textual) in MRICDF, a compilation algorithm must decide
whether there exists a deterministic sequential/multi-threaded code satisfying the constraints, and
if so, whether it is unique. If not — and thus nondeterministic — the user must provide additional
constraints to make it so. If this effort fails, the specification is rejected by the compiler. In the
process of determining implementability and subsequent synthesis, the compiler creates a
Boolean theory and computes its prime implicates.

3.2 Boolean Theory and Prime Implicates
A Boolean theory is a set of Boolean clauses. Let the theory B be defined over a set of Boolean
variables X. Then [𝑋 → {0,1}] denotes the space of all assignments to variables in X. An
assignment, 𝑓 ∈ [𝑋 → {0,1}], is a model for theory B, if and only if by assigning the Boolean
values to all variables x∈X as f(x), one can satisfy all clauses in B.

A Boolean theory that is satisfiable has at least one such model. A prime implicate of a Boolean
theory is a disjunctive Boolean clause C such that any model of B also satisfies C and there is no
C1 such that 𝐶1 → 𝐶 and any model of B also satisfies C1.

Given an arbitrary Boolean theory, computing the prime implicate is often of exponential
complexity. Most current algorithms also require that the Boolean clauses in the theory be first
converted into a conjunctive normal form (CNF) before applying the algorithm. The recent work
of Murray and Rosenthal [34] has derived a new algorithm that can produce prime implicates
(and an implicit representation of all prime implicates) of a Boolean theory where the clauses can
be in any arbitrary form. However, this algorithm is time consuming.

It is, however, expected that this algorithm may be sped up substantially as the current algorithm
is agnostic of any special characteristics of the Boolean theory that are generated from MRICDF
models during computations of their master triggers.

It has been shown in the past that algorithms that are agnostic of the special nature of the inputs
on which the algorithm is applied have higher time and space complexity than algorithms that
take into account the special nature of their inputs. For example, finding the chromatic number of
a graph is known to be NP-Complete, but if one knows that the only graphs needed to compute
the chromatic number belong to a special class of graphs called "Perfect Graphs," then one can
come up with special algorithms which can compute the chromatic numbers in polynomial time.
Similarly, the famous SAT problem that is well known to be NP-Complete can be shown to be
solvable in polynomial time, if the clauses obtained belong to the class of HORN clauses. Also,
there is a notion of localization of problem instances. For example, if the variables that occur in
multiple clauses can be limited to reappear in no more than k clauses. One may say that that SAT
problem is k-bounded. In such a case, one can devise faster algorithms for solving SAT.

Since the Boolean theories that are generated from MRICDF are very localized, in the sense that
a clause 𝑥 ↔ 𝑦 v 𝑧, appears only when y and z are inputs to a merge actor in an MRICDF model,
one can find such locality properties. As a result, Murray and Rosenthal’s algorithms to compute

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

prime implicates may not exploit such locality (referred to as ’regularity’) and it may be required
to devise new algorithms that work much faster computing prime implicates for such instances.

Members of the project team have past expertise in solving problems with such locality
properties for various graph and satisfiability problems. So as the research progresses, it is highly
likely that the discovery and characterization of the Boolean theories that appear during analysis
of MRICDF models can be solved with much faster algorithms.

Prime implicates enable construction of a hierarchical control structure that creates a
deterministic schedule of all the computations which are consistent with the control constraints. If
non-Boolean constraints — for example, x > 10 — are replaced by unrestricted Booleans, the
resulting theory becomes a conservative abstraction of the more elaborate theory with further
expressiveness. The latter case would provide better leverage in optimizing the control structure
and in reducing redundant paths. To this end, the combination of prime implicates algorithms and
SAT Modulo Theory (SMT) solvers [25] is being investigated.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

4 Results and Discussion
4.1 Development of Behavioral Type for a Software component

4.1.1 Development of a theory of type for temporal behavior at the
interface of a software Component
Overview: It was proposed, as a behavioral type, to consider the polychronous model of a
component. From this model, one could extract and manipulate significant information like clock
relations and data dependencies and check for the compatibility of the components. The
compatibility of polychronous components – their ability to be composed – depends on the
absence of dependency cycles and the calculability of common clocks and signals. The
framework and the compatibility property have been designed with the goal of composition, thus
the computations of the properties benefit from modular decomposition. The theories that are
involved in this work will be described as this report progresses.

4.1.1.1 Preliminary Definitions
During the execution of programs, computational activities evolve over time, but not necessarily
at the same pace in every concurrent thread of execution. It is required to track the computation’s
progress as a partially ordered set of logical instants. It is partially ordered because it may be
necessary to keep some events unordered – e.g., two concurrent actions should be able to run
independently. The computation activities happening to each signal/variable in the system are
termed events.

Definition 1 (Event) Ξ denotes the set of all events. ≤ is a preorder on Ξ: e≤f means that e occurs
before or concurrently with f. ∼ is the equivalence relation based on ≤: e∼f means that e and f
occur simultaneously hence termed synchronous events.

Definition 2 (Logical Instant or Instant) Υ denotes the quotient of Ξ by ∼ as the set of instants.
Thus a logical instant is a maximal set of events that are synchronous.

Note that synchronous events may have data dependencies and hence may have a partial order
inside the instant, different from ≤. This different order serves the generation of sequential code.

Definition 3 (Partial order on Instants) Υ/≤ is the partial order on instants based on Ξ /≤:

∀𝑎, 𝑏 ∈ 𝑌,𝑎 ≤ 𝑏 ⇔ ∃𝛼 ∈ 𝑎,𝛽 ∈ 𝑏 | 𝛼 ≤ 𝛽

The above definition lifts the ≤ and the corresponding strict order < to the set of logical instants
to compare the order of happening of some of the logical instants.

The entities of the model are signals, defined on instants. A signal is a succession of values,
happening at some specific instants. This specific succession of instants is the clock of the signal.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
8

Definition 4 (Signal) Let T be a set of values – the type and T⊥=T∪{⊥} its extension with a
special value meant to represent absence, a signal is a functionΥ→T⊥. For all instants in γ⊂Υ
such that γ is a total order in Υ, it associates a value from T, and for each instant of (Υ−γ) it
associates the absence value: ⊥. A maximal such γ is the domain of definition for the signal.

𝑥 ∶ �Υ → 𝑇⊥
�

𝑥 ∶ �γ → 𝑇�
𝑥 ∶ Υ − 𝛾 → {⊥}

A signal x is defined over a total ordered set of instants:

∀𝑝, 𝑞 ∈ Υ,
𝓍(𝑝) ≠⊥∧ 𝓍(𝑞) ≠⊥⟹ 𝑝 ≤ 𝑞 ∨ 𝑞 ≤ 𝑝

Let us define a characteristic function σ that tells if a signal x is present or absent at any given
instant t in Υ.

𝜎 �Υ → 𝑇⊥ → Υ → {𝑡𝑟𝑢𝑒,𝑓𝑎𝑙𝑠𝑒}�
 𝜎(𝑥)(𝑡) = 𝑡𝑟𝑢𝑒 𝑖𝑓 𝑥(𝑡) ∈ 𝑇

 = 𝑓𝑎𝑙𝑠𝑒 𝑖𝑓 𝑥(𝑡) = ⊥
Error! Bookmark not defined.

Given a signal x, one can also define a clock signal x , clocks and characteristic functions play
the same role. Characteristic functions will be used in formal definitions and clocks as in this
example in SIGNAL.

. ̂ (𝑐𝑙𝑜𝑐𝑘): �Υ → 𝑇⊥ → Υ → {𝑡𝑟𝑢𝑒,𝑓𝑎𝑙𝑠𝑒}�
 𝜎(𝑥)(𝑡) = 𝑡𝑟𝑢𝑒 𝑖𝑓 𝑥(𝑡) ∈ 𝑇

 = 𝑓𝑎𝑙𝑠𝑒 𝑖𝑓 𝑥(𝑡) = ⊥

Thus 𝜎(𝑥�) = 𝜎(𝑥) and two signals x and y are synchronous if and only if there exists no instance
such that, x is present and y is not present and vice versa.

The notation 𝑥(𝑡𝑥0) defined as such: 𝑥(𝑡𝑥0) ∈ 𝑇 and ∀𝑡 ∈ Υ, 𝑡 < 𝑡𝑥0 ⇒ 𝑥(𝑡) = ⊥ will also be
used. In other words, it is the value for signal x at its initial logical instant.

Another notational convenience is nonstandard. The notation 𝑥(𝑡𝑥−1) defined as such: ∀𝑡 ∈ Υ,
such that 𝑥(𝑡) ∈ 𝑇 and 𝑡 ≠ 𝑡𝑥0 , where 𝑡𝑥−1 ∈ Υ such that 𝑥(𝑡𝑥−1) ∈ 𝑇 and ∀𝑝 ∈ Υ, 𝑡𝑥−1 < 𝑝 <
𝑡 ⇒ 𝑥(𝑝) = ⊥ .

Accordingly 𝑡𝑥−1 is actually not an arithmetic subtraction from t, but denotes the last logical
instant before the instant t, where the signal was defined. The processes are based on relations
between clocks and signals. These relations or constraints define a system in which inputs are
provided from the environment and outputs are computed by the system.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
9

Definition 5 (Process) A process is a tuple (V, N, C, D)
• V is a set of signals.

• N is a mapping associating names to signals of V.

 N ⊆ V × Name

Note that same signal may be named differently in different processes, hence N is a
relation. It is used in composition of processes, or in instantiation. Two identical processes
can be instantiated with different N and then work on different signals.

• C is a system of equations that constraints σ functions (i.e., the clocks) with signals.
Therefore C is constraints on the control flow of the system.

∀e∈ C, ∃ x ∈V, ∃ t ∈ Υ
e:= σ(x)(t) = ex

t ({xi(t’)},{σ(xj)(t)})
where, ex

t is a Boolean operation on any signals 𝑥𝑗 ∈ V or clock 𝜎(𝑥𝑗) at the instants t and
t'=t or 𝑡𝑥𝑖

−1 – that defines σ(x)(t).

Note that it can be shown that if a clock constraint refers values of signals at earlier
instants, one can always rewrite C so that it depends on the immediate past instant t−1

x .
Thus the relations in C only refer to current and immediate past instants.

• D is a system of equations that constrains the values taken by the signals together. Thus D
is the data flow specification of the process.

∀g∈ D, ∃ x ∈ V, ∃ t ∈𝓍̂ such that
g:=x(t)= gx

t ({xi(t’)},{σ(xj)(t)})
where, gx

t is a valid function on the type of the values taken by the signals xi∈V or clock

σ(xj) and the instants t and t'=t or – that defines x(t). t
−1
xi

Some signals and clocks may remain unconstrained or undefined, because they are the free
variables of the systems. The undefined clocks determine the pace of the program and the
undefined signals will incrementally determine the values of all other signals. Undefined signals
may be designed as inputs although some inputs may have constraints.

Example 1 Let us study a SIGNAL process, biadder shown in Figure 1, and its representation
in this formalism in Figure 2. This process consists of two concurrent threads that accumulate
values from input x1 on y1 and from input x2 on y2. On a specific instant defined as when both
inputs carry the value 0, the threads synchronize and the output s carries the sum of both
accumulations.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
10

process biadder = (? integer x1 , x2 ; ! integer y1 , y2 , s ;)
(| y1 := y1$ init 0 + x1
 | y2 := y2$ init 0 + x2
 | s := (y1 when s) + (y2 when s)
 | s ^= (x1 = 0) ^= (x2 = 0)
 |)

Figure 1: Process biadder - a SIGNAL implementation

Figure 2: Control flow and Data flow constraints of process Bi-adder

Start with V and N. Not every signal is given a name. Only those that need to be defined or that
belong to the interface are given names. So the biadder process manipulates some signals with
no name, for example the Boolean signal (x1 = 0), this signal has a clock (which is x  the clock of
x) and can be used in an equation. y1$ and y2$ are not signals. Since signals contain the values
for each instants over which they are defined, y1$ is just a way to design)y1(t−1 .

C contains four equations derived from the SIGNAL code. The first two synchronize x1 with y1
and x2 with y2. The semantics of SIGNAL, would induce the equations
∀t∈ Υ,σ(y1)(t)=σ(y1)(t)∧σ(x1)(t) for the “:=" operator and ∀t∈ Υ,σ(y1)(t)=σ(x1)(t) for the “+"
operator. This was simplified using Boolean rules.

The line 5 of the SIGNAL process would induce the equations ∀t∈ Υ,σ(y1when s)(t)=σ(s)(t), the
same for y2 and ∀t∈ Υ,σ(s)(t)=σ(y1whens)(t)∧σ(y2whens)(t). Since “y1 when s" and “y2 when
s” are not used in the other formula, and the definition of “s" is a tautology; these equations are
not considered.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
11

The last line of the process induces two clock equations in C. The clock of s is defined by two
different equations and relies not only on clocks but also on values (the values of x1 and x2).

D contains the definitions of the signals, those definitions hold only when their clock is true
(given by the function sigma). Again, definitions of “x = 0” and “y when s” are not given since
they do not serve the comprehension of the example. Since signals are all of type integer, the +
operator is valid as the addition of integers.

For a process with a system of clocks, one can define a clock hierarchy. A hierarchy is a stronger
representation of clocks induced by the clock calculus [48]. If a hierarchy has a unique greatest
element, this element is called ‘root’ and the hierarchy is a tree. It may also have several roots
that form a forest. Building a tree or a forest helps determine if the individual states are
endochronous or weakly-hierarchical and then to check isochrony of the system [53]. It also
constructs a schedule for an implementation of the system.

Definition 6 (Clock Hierarchy) The control flow constraints C of a process induces a set with a
relation on clocks of signals – the clock hierarchy H= (V , ≥) defined by the following rules:

1. for all multi-valued signals x∈V, and all values u that appear on the right hand side of the
data flow or control flow constraints D,C :
 x , (x = u)∈ V 
(x   (x = u))∈ H

2. if C⊧∀t, σ(b)(t) =σ(c)(t) then (b ≥ĉ),(ĉ≥b ), ∈ H written (b ∼ĉ)
3. if ∃g∈{when, default},D⊧b1(t)=g(c1(t),c2(t)) and (b 2≥ĉ1),(b 2≥ĉ2)∈H then b 2≥b 1∈H.

Definition 7 (Root) The Clock Hierarchy of a nonempty process is a partially ordered set with at
least one greatest element. A signal r is a root in the hierarchy if ∀x∈V , x≥ r ∈ H ⇒ x = r. A
signal rο is a unique root of H if ∀x∈ H, r0 ≥ r.

The system of equations C and D induces a graph on signals, the instantaneous dependency graph
[45]. This graph represents the relation of dependencies between signals. This graph says that in
some logical instant, a signal cannot be computed without knowing the value or presence of a
second signal. It is important that such dependency graphs have no constructible cycle. If a cycle
exists in the graph, at least two signals are mutually dependent and they cannot be calculated.

Definition 8 (Exclusive clocks) In a Hierarchy, two clocks are exclusive # if they depend of two
different values of a same signal.

∀x, y∈H, x # y ⇔ ∃ z ∈ H; u, v ∈ domain (z) |u ≠ v∧ [z=u] ≥ x∧ [z=v] ≥ y

Definition 9 (Dependency graph of a process) Systems C and D induce a graph on signals: the
dependency graph G = (V, →) where → is the relation of dependency: x(t)→ y(t) means that C
contains an equation σ(y)(t)=ey

t (x)(t) or D contains an equation)y(t)=fy
t (x)(t . Let →+ denote

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
12

transitive closure of →. The process is cyclic iff, ∃𝑡 ∈ 𝑌,∃𝑥,𝑦 ∈ 𝐺, 𝑥 ≠ 𝑦, 𝑥(𝑡) →+ 𝑦(𝑡)
and 𝑦(𝑡) →+ 𝑥(𝑡).

Definition 10 (Form of a hierarchy) A hierarchy is well-formed iff ∀𝑥 ∈ 𝐻, there does not
exist 𝑦, 𝑧 ∈ 𝐻|𝑦 ≥ 𝑥 𝛬 𝑧 ≥ 𝑥 𝛬 𝑦#𝑧. A process with an ill-formed hierarchy may block on some
inputs.

4.1.1.2 Compilability of Processes – Endochrony and Weak-Hierarchy
Endochrony of a process means that the process is able to read a flow of values irrespective of the
time delays between subsequent values on the inputs, and still behaves deterministically.
Endochrony is checked for different reasons – to ensure that a sequential implementation of a
polychronous process can run deterministically in a latency insensitive manner – also to check if
an asynchronous composition of processes will behave the same way as its synchronous
composition, for instance read the values that are expected and emit them when they are needed.
This second property is called isochrony between components and needs to be checked if the
components are to be distributively deployed.

The definition of endochrony is expressed in terms of behaviors of processes. It is the property of
a process that it is insensitive to the loss of timing relation between its inputs. Methods for
checking endochrony are well studied [45], for example on the basis of theorems.

Definition 11 (Endochrony) An endochronous process is a process that can reconstruct the
timing relations of its signals from input streams of data with no timing relation [47].

This property has been expressed in the formalism of clock hierarchies and data dependencies in
the past.

Theorem 1 (Endochrony of a Process) A process is endochronous iff it has a well-formed and
acyclic clock hierarchy with a unique root. For proof, see [52].

Another property of polychronous processes termed weak hierarchy has been defined in an
attempt to extend the set of compilable processes by adding a class of constrained compositions
of endochronous processes. Previously the weak-endochrony property [50] was defined that
included endochronous processes and some of their compositions. However, weak-endochrony
does not necessarily imply compilability. A weakly-endochronous process can be blocking, for
instance, with a deadlock. The set of weakly hierarchical processes has been shown to sit
between the set of endochronous processes and the set of weakly-endochronous processes [49].

Definition 12 (Weak hierarchy) A process is weakly hierarchical if and only if either:

• It is endochronous;
• It is the composition of some weakly hierarchical processes such that the hierarchy H of

the composition is well-formed and the dependency graph G is acyclic.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13

Example 2 Recall the process biadder from Figure 1. It may be decomposed into three
processes, which can be proven endochronous (x1 is the root of P1, x2 the root of P2 and s the
root of P3). Furthermore, it may be proven that their composition is well-formed and does not
introduce cycles. Thus, biadder is weakly-hierarchic.

Process biadder = (? integer x1, x2; ! integer y1, y2, s;)
(| P1 : (| y1 := y1$ init 0 +x1
 | s ^= (x1 = 0) |)
 | P2 : (| y2 := y2$ init 0 +x2
 | s ^= (x2 = 0) |)
 | P3 : (| s := (y1 when s) + (y2 when s) |)
 |)

Figure 3: Process biadder - a weakly hierarchical implementation

4.1.1.3 Non blockage of weak-hierarchic composition
Given the definition of weak hierarchy, a weakly hierarchic composition has to be non-blocking.
This means that the components that are composed must be acyclic and have a well formed
hierarchy. Since composition occurs on components that are already acyclic and well formed, the
non-blocking checking can be done on the interface.

Lemma 1 Knowing that P and Q are both weakly hierarchic, the condition of cyclicity can be
checked only on the interface of P and Q.

• Let P and Q be two processes. The dependency graph of the interface of P and Q is called
and the union of the transitive closures of the dependency graph of P and Q projected to
their interface P∩Q.

• If P and Q are acyclic process and the dependency graph of the interface of P and Q is

acyclic then the composition P|Q is acyclic.

• The composition of P and Q is cyclic if for any pair of signals x, y that belong to the

interface P∩Q, P holds a dependency between x and y and Q holds the opposed
dependency.

4.1.1.4 Clock Checking – Isochrony
Isochrony is the property that shows clock compatibility. Isochrony ensures that a system can be
desynchronized – i.e., the composed components are tolerant to latency and can communicate
through asynchronous channels without missing any communicated values, and result in
deterministic execution.

Definition 13 (Isochrony) A system of processes is isochronous if the asynchronous composition
of the processes has the same behavior as their synchronous composition.

The behaviors of two processes are considered the same if the sequences of data values on
corresponding signals are the same given the same sequence of values on all inputs. This is called
flow equivalence [46]. In other words, the information on alignment of the values to logical

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
14

instants can be ignored while considering this equivalence. These have been considered in much
detail in [46, 52].

Theorem 2 (Isochrony with Endochrony) A system of processes is isochronous if the composition
of the processes is endochronous.

process endochronous_composition = (? C_1, C_2, C_s, x_1, x_2; ! integer s;)

(| s1 := P1(C_1,C_s,x1)

 | s2 := P2(C_2,C_s,x_2)

 | s := P3(s1,s2)

 |) where s1, s2;

 process P1 = (? C_x, C_out, x; ! out)

 (| x ^= when C_x

 | y := y$ init 0 + x

 | out := y when C_out

 |) where y ;

 process P2 = (? C_x, C_out, x; ! out)

 (| x ^= when C_x

 | y := y$ init 0 + x

 | out := y when C_out

 |) where y ;

 process P3 = (? s_1, s_2; ! s)

 (| s := s_1 + s_2

 |)

end
Figure 4: Isochrony of an Endochronous composition

Figure 4 provides an example. Process endochronous_composition is isochronous because each
of the composed processes is endochronous and the composition is itself endochronous. The main
clock, which has to be faster than every input, and the actual presence of an input at this clock
exist. P1 and P2 share the global clock, even if during some instants of this clock, when one input
is absent, the process may not be working. Also note that the clock of P3 is “when C_s”, which is
different than the global clock. This is still correct because “when C_s” is a subclock of the
global clock and the hierarchy of clock is respected.

This theorem has long been the rule in synchronous system. Proving that a system is
endochronous is equivalent to finding a global clock of a system and relating every signal to this
global clock. Unfortunately this can be very inefficient in heterogeneous systems where different
components are paced at different clocks. In polychronous systems, which represent the best of
these kinds of systems, the aim is to find a way to ensure isochrony of systems without
synchronizing components to a global clock. To achieve the property of isochrony, weak-
hierarchy is used.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15

Theorem 3 (Isochrony with Weak-Hierarchy) A system of processes is isochronous if each
process is weakly hierarchical and their synchronous composition is also weakly hierarchical.

Proof (See [49]). The proof uses two properties of isochrony: (1) a non-blocking composition of
two endochronous processes is isochronous and (2) a composition of processes in which every
pair of processes is isochronous, is also isochronous. Since a weakly hierarchical process is a
non-blocking composition of n-endochronous processes, each pair of processes forms an
isochronous sub-system and the whole system is isochronous.

process weak_hierarchy_composition = (? C_s1, C_s2, x_1, x_2 ;! integer s;)

 (| s1 := P1(C_s1,x1)

 | s2 := P2(C_s2,x_2)

 | s ^= when C_s1 ^= when C_s2

 | s := P3(s1,s2)

 |) where s1, s2;

 process P1 = (? C_out, x; ! out)

 (| y := y$ init 0 + x

 | out := y when C_out

 |) where y ;

 process P2 = (? C_out, x; ! out)

 (| y := y$ init 0 + x

 | out := y when C_out

 |) where y ;

 process P3 = (? s_1, s_2; ! s)

 (| s := s_1 + s_2

 |)

end
Figure 5: Isochrony of a weakly hierarchic composition

Figure 5 provides a second example of composition which is no longer endochronous despite the
fact that each process of the composition is actually endochronous. The clocks of the process P1
and P2 can be different and unrelated. The clock of P3 is no longer a subclock of the global clock
but it is still a subclock of P1’s and P2’s. The relation between the clock of P3 and the clocks of
P1 and P2 is given by the equation “s =  when C_s1 =  when C_s2”. The set of clock relation
induces an order relation which is not total.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
16

4.1.2 Develop methods for behavioral type extraction from
MRICDF specification of a software component

4.1.2.1 Problems
1. Earlier MRICDF to SIGNAL code generation techniques treated function actors with a C

definition as normal assignments. Also when the SIGNAL code was generated, – function
call, interface details, function definition and the declaration were ignored. Any MRICDF
model with a function actor was useless, except for direct C code generation. Conversion
of MRICDF to SIGNAL was not able to be performed directly.

2. If one signal was branched out to multiple actors, the earlier way of handling conversion
resulted in all signals being randomly assigned. For example, if signal a is an output of
actor A coming from port p0 and is connected to input port p1 of actor B, input port p2 of
actor C and input port p3 of actor D. Conversion assigns p1.B=p2.C, p2.C=p3.D and
p1.B=p0.A, which is not correct. Because of this there are problems in calling C functions
with arguments.

3. Because of these problems behavioral type extraction from MRICDF models with function

actors are not able to be performed.

4.1.2.2 Solution
1. The assignment was corrected in conversion. Now B.p1=p0.A, C.p2=p0.A and D.p3=p0.A

allowing function calls with arguments to be converted properly.

2. Generation of SIGNAL code from MRICDF is complete. It has been tested for the
benchmark examples and works correctly.

3. Type information is able to be generated from the MRICDF models.

4.1.2.3 Anticipated problems and future work
1. Currently type extraction is done by converting MRICDF models to SIGNAL

specifications and then using the “−spec" option for extracting the clock information
regarding signals and sub-processes. The extracted information might contain a lot more
information than what is needed. In the future, refining the extraction process to ignore
detailed information will be explored.

2. A C function calling another C function is not currently handled. Each function actor can

call only one C function. This might lead to restrictions in future designs but none have
been noted as of now. The fix can be easy implemented in the future.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
17

4.1.2.4 Extended Report: Develop methods for behavioral type extraction from MRICDF
specification of a software component
Development of large software by means of a modular design approach often leads to long delays
due to interface differences between interacting modules. Extracting behavioral type information
from such software can provide us with valuable information to construct a formal foundation to
investigate various compositional design methodologies between various interacting modules.
Extraction of behavioral type information can be done at various stages, during the development
process, or post-development during integration. This work focuses on how to extract behavioral
type information during the development phase of the project. Once extracted, this information
can be further used during integration to check the compatibility of various modules. Further, this
work has been restricted to extracting behavioral information during the EmCodeSyn based high-
level software synthesis methodology. Section 4.1.3 will discuss how to extract behavioral type
information from C programs.

MRICDF is a data-flow specification. It does not store behavior type information. Hence it is
necessary to transform it to another form, from which one can extract the behavior type
information. To get into the required form, a source-to-source translation of the given MRICDF
specifications to SIGNAL specifications is performed. All the primitive actors except function
actor get translated to the corresponding actors in SIGNAL. The low level implementation details
specified inside function actors are all abstracted and only the interface details are exported as the
SIGNAL specifications. Since the functions are supposed to be executed in a single instant, just
the interface details are sufficient to do the compatibility check. From the abstracted SIGNAL
specifications, one can derive the clock relations, dependency information, and check for
compatibility, causal loops, deadlocks, live-locks, race conditions etc. This methodology is
illustrated with an example below.

Consider a simple producer-consumer system designed using EmCodeSyn. The data-flow model
is shown in Figure 6. Function actors F1 and F2 represent producer and consumer modules
respectively. Buffer actor B1 is used to provide feedback to function actor F1 and buffer actor B2
is used to tap the output of the consumer.

Figure 6: Producer-Consumer System

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
18

The actual behavior of the producer and consumer is specified using C function but the signals on
which the producer produces inputs and the consumer consumes the inputs are specified
externally. These control signals and their logic get exported as SIGNAL specifications but the
implementation details of producer and consumer modules are hidden. The translated SIGNAL
specification is shown in the listing of Figure 7.

process prodcons =
(? boolean F1i2;! integer B2o4;)
(
| F1o1 := F1_prod1(F1i1, F1i2)
| F1i1 := B1o3
| F2o2 := F2_cons1(F2i3)
| F2i3 := F1o1
| B1o3 := B1i4 $ init 1
| B1i4 := F2o2
| B2o4 := B2i5 $ init 1
| B2i5 := F2o2
|)
where
integer F1i1, F2i3, B1i4, B2i5, F1o1, F2o2, B1o3;
function F1_prod1 =
(? integer F1i1;
boolean F1i2;
! integer F1o1;
)
;
function F2_cons1 =
(? integer F2i3;
! integer F2o2;
)
;
end % prodcons %;

Figure 7: Producer-Consumer System Translated SIGNAL Specification

To get the corresponding clock relations and dependency information between various signals
and modules, one would compile the abstracted SIGNAL specifications using the Polychrony
compiler with “−spec" option,. This information is shown in the listing of Figure 8. With this
information one can perform checks for compatibility, causal loops, deadlocks, livelocks, race
conditions etc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
19

process prodcons_POLY_TRA =
 (? boolean F1i2;
 ! integer B2o4;
)
 pragmas
 Main
 end pragmas
 (| (| CLK_F1i2 := ^F1i2
 | CLK_F1i2 ^= F1i2 ^= B2o4
 | ACT_CLK_F1i2{}
 |) |)
 where
 event CLK_F1i2;
 process ACT_CLK_F1i2 =
 ()
 (| CLK_F1i2 ^= F1o1 ^= F2o2 ^= B1o3
 | (| B2o4 := F2o2$1 init 1
 | B1o3 := F2o2$1 init 1
 | F1o1 := F1_prod1(B1o3,F1i2)
 | F2o2 := F2_cons1(F1o1)
 |)
 |)
 where
 integer F1o1, F2o2, B1o3;
 end
 %ACT_CLK_F1i2%;
 function F1_prod1 =
 (? integer B1o3;
 boolean F1i2;
 ! integer F1o1;
)
 external
 %F1_prod1%;
 function F2_cons1 =
 (? integer F1o1;
 ! integer F2o2;
)
 external
 %F2_cons1%;
 end
%prodcons_POLY_TRA%;

Figure 8: Producer-Consumer System Behavioral Information

4.1.2.5 Anticipated problems and Future work
Currently type extraction is performed by converting MRICDF models to SIGNAL specifications
and then using “−spec" option for extracting the clock information regarding signals and sub-
processes. The extracted information might contain a lot more information than what is needed.
In the future, refinement of the extraction process to ignore detailed information will be
investigated. A C function calling another C function is not handled currently. So each function
actor can call only one C function. This might lead to design restrictions in future. The approach

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
20

to use the C−to−Signal extraction tool to extract behaviors regarding internal function calls from
top-level C routines will be investigated.

4.1.3 Develop methods for behavioral type extraction from C code

4.1.3.1 Work Completed
C code with the following constructs can be successfully converted to SIGNAL code using the C
to SIGNAL (CTS) tool.

1. Assignments

2. If else

3. Nested if else

4. While loop

4.1.3.2 Anticipated problems and future work
1. SIGNAL code generated for “for" loops, “do...while", “if...else inside while" have to be

tested.

2. Function calls inside a function have to be handled.

4.1.3.3 Extended Report: Automatic Conversion of C code to SIGNAL code
The C to SIGNAL conversion is achieved in two steps. The C code is first converted to its Static
Single Assignment (SSA). Then the SSA is converted into SIGNAL by the CTS tool. SSA is an
intermediate form where each variable is assigned exactly once. The SSA form is obtained from
the C code with the help of GNU Compiler Collection (GCC).

Figure 9: C to Signal Conversion Steps

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
21

4.1.3.3.1 C to SSA conversion
GCC generates the SSA code from the C code after some intermediate conversions. The GCC
first converts the C code into Gimple Trees. The Gimple Trees are converted into a Control Flow
Graph (CFG). The Control Flow graph is finally converted into SSA. This is done by GCC.

4.1.3.3.2 SSA to SIGNAL conversion
The generated SSA is parsed and relevant information is stored in a data structure. The block
names, variables, constant variables, inputs, outputs, conditions and assignment statements in the
SSA are parsed using regular expressions and stored in a data structure. The conversion of SSA
to C code is described below:

4.1.3.3.3 SSA Blocks
The SSA consists of blocks which correspond to the various states in the program. Since all of
the blocks consist of atomic statements with exactly one assignment for each variable, all of these
statements can be executed in parallel. An enum type lbl is created in the SIGNAL code which
takes names of all the blocks in the SSA. For example, if the SSA has blocks - <bb 2>, <bb 3>,
<bb 4>, <bb 5>, the SIGNAL code is as follows:

type lbl = enum (bb2, bb3, bb4, bb5);
lbl label1, label_past;

label_past is the delayed version of label1. label1 and label_past are used to describe the state
transitions which handle the control flow based on the conditions.

4.1.3.3.4 Assignment Statements
The assignment statements in SSA have the same form as in SIGNAL. Hence they are directly
used from the SSA without any changes. An example of assignment statement in SSA is:

In C: num = num + 2;
In SSA: num_4 = num_1 + 2;
In SIGNAL: num_4:= num_1 + 2

4.1.3.3.5 PHI function
The PHI function is used to decide the final value of the variable from different versions of the
variable based on the value of the basic block. The PHI functions are transformed to
“when...default" statements in SIGNAL.

In SSA: num_1 = PHI <num_5(4), num_6(5)>
In SIGNAL: num_1:= num_5 when (label1 = #bb4) default
 num_6 when (label1 = #bb5) default num_1z

Here num_1z is the delayed version of num_1.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
22

4.1.3.3.6 Conditional statements
The conditional statements specify the branching to a different block based on certain conditions.
These are transformed to SIGNAL code using the enum lbl.

SSA:
 <bb 3>:
 if (num_4(D) > 99)
 goto <bb 4>;
 else
 goto <bb 5>;

SIGNAL:
label1 := #bb4 when (label_past = #bb3)and(num_4buf > 99) default
 #bb5 when (label_past = #bb3)and(num_4buf <= 99) default

Here the buffered value of the input (num_4) is used. The buffered input is described in the next
section.

4.1.3.3.7 Buffered values
The input variables and the variables in the PHI function need to be buffered in the SIGNAL
code. For example, if int a_2 is the input and

num_1 = PHI <num_5(4), num_6(5)>

is the PHI function, the signal code for buffered values is as follows:

|a_2bufz := a_2buf $ init 0
|a_2buf := a_2 when (label_past = #bb2) default a_2bufz

|num_1z := num_1 $ init 0;

The initial value for num_1 is a constant value if a constant value is assigned to it in the C code
else it is 0.

4.1.3.3.8 Code Examples
Examples of C programs, their corresponding SSA and the automatically generated SIGNAL
programs are given below.

4.1.3.3.8.1 If else
C Code

int ifElse(int flag1, int num)
{
if(flag1 == 0)

num++;
else

num--;
return num;
}

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
23

SSA form

int ifElse(int, int) (int flag1, int num)
{
 int D.1242;

<bb 2>:
 if (flag1_2(D) == 0)
 goto <bb 3>;
else
 goto <bb 4>;

<bb 3>:
 num_4 = num_3(D) + 1;
 goto <bb 5>;

<bb 4>:
 num_5 = num_3(D) + -1;

<bb 5>:
 # num_1 = PHI <num_4(3), num_5(4)>
 D.1732_6 = num_1;
 return D.1242_6;
}

SIGNAL code:
process ifElse = (? integer flag1_2, num_3;
!integer out1)
(| flag1_2bufz := flag1_2buf $ init 0
 | flag1_2buf := flag1_2 when (label_past = #bb2) default flag1_2bufz
 | num_3bufz := num_3buf $ init 0
 | num_3buf := num_3 when (label_past = #bb2) default num_3bufz
 | label_past := label1 $init #bb2
 | label1 :=
#bb3 when (label_past = #bb2) and (flag1_2buf = 0) default
#bb4 when (label_past = #bb2) and (flag1_2buf /= 0) default
#bb5 when (label_past = #bb3) or (label_past = #bb4) default #bb2
 | num_4 := num_3buf + 1
 | num_5 := num_3buf + -1
 | D01242_6 := num_1z
 | num_1z := num_1 $ init 0
 | num_1:= num_4 when (label1 = #bb3) default

 num_5 when (label1 = #bb4) default num_1z
 | out1 := D01242_6 when (label1 = #bb5)
 | flag1_2^= num_3^= when (label_past = #bb2)
 | num_1 ^= num_1z ^= label1 ^= label_past
 | num_3buf ^= flag1_2buf
 |)
where
integer num_4; integer num_5; integer D01242_6; integer num_1;
integer flag1_2buf, flag1_2bufz;
integer num_3buf, num_3bufz;
integer num_1z;
type lbl = enum (bb2, bb3, bb4, bb5);
lbl label1, label_past;
end;

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
24

4.1.3.3.8.2 Nested if else
C Code

int nestedIfElse(int flag1, int num)
{
 if(flag1==0)
 {
 if(num >= 100)

 num++;
 else
 num=num+2;
 }
 else
 num--;
 return num;
}

SSA representation:

;; Function int nestedIf(int, int)
int nestedIfElse(int, int) (int flag1, int num)
{
 int D.1735;

<bb 2>:
 if (flag1_3(D) == 0)
goto <bb 3>;
 else
goto <bb 7>;

<bb 3>:
 if (num_4(D) > 99)
goto <bb 4>;
 else
goto <bb 5>;

<bb 4>:
 num_5 = num_4(D) + 1;
 goto <bb 6>;

<bb 5>:
 num_6 = num_4(D) + 2;

<bb 6>:
 # num_1 = PHI <num_5(4), num_6(5)>
 goto <bb 8>;

<bb 7>:
 num_7 = num_4(D) + -1;

<bb 8>:
 # num_2 = PHI <num_1(6), num_7(7)>
 D.1735_8 = num_2;
 return D.1735_8;
}

SIGNAL Code

process nestedIfElse = (? integer flag1_3, num_4;
!integer out1)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
25

(| flag1_3bufz := flag1_3buf $ init 0
 | flag1_3buf := flag1_3 when (label_past = #bb2) default flag1_3bufz
 | num_4bufz := num_4buf $ init 0
 | num_4buf := num_4 when (label_past = #bb2) default num_4bufz
 | label_past := label1 $init #bb2
 | label1 :=
#bb3 when (label_past = #bb2) and (flag1_3buf = 0) default
#bb4 when (label_past = #bb3) and (num_4buf > 99) default
#bb5 when (label_past = #bb3) and (num_4buf <= 99) default
#bb6 when (label_past = #bb4) or (label_past = #bb5) default
#bb7 when (label_past = #bb2) and (flag1_3buf /= 0) default
#bb8 when (label_past = #bb6) or (label_past = #bb7) default #bb2
 | num_5 := num_4buf + 1
 | num_6 := num_4buf + 2
 | num_7 := num_4buf + -1
 | D01245_8 := num_2z
 | num_1z := num_1 $ init 0
 | num_2z := num_2 $ init 0
 | num_1:=

num_5 when (label1 = #bb4) default
 num_6 when (label1 = #bb5) default num_1z
 | num_2:=

num_1 when (label1 = #bb6) default
 num_7 when (label1 = #bb7) default num_2z
 | out1 := D01245_8 when (label1 = #bb8)
 | flag1_3^= num_4^= when (label_past = #bb2)
 | num_1 ^= num_1z ^= num_2 ^= num_2z ^= label1 ^= label_past
 | flag1_3buf ^= num_4buf
 |)
where
 integer num_5; integer num_6; integer num_1; integer num_7;
 integer D01245_8; integer num_2;
 integer flag1_3buf, flag1_3bufz;
 integer num_4buf, num_4bufz;
 integer num_1z;
 integer num_2z;
 type lbl = enum (bb2, bb3, bb4, bb5, bb6, bb7, bb8);
 lbl label1, label_past;
end;

4.1.3.3.8.3 While loop
C Code

int whileCode(int n)
{
 int i=0;
 int result=1;
 while(i<3)
 {

result=result*n;
i++;

 }
 return result;
}

SSA form:

;; Function int cube(int) (_Z4cubei)
int whileCode(int) (int n)
{

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
26

 int result;
 int i;
 int D.1243;
 bool D.1733;

<bb 2>:
 i_3 = 0;
 result_4 = 1;
 goto <bb 4>;

<bb 3>:
 result_6 = result_2 * n_5(D);
 i_7 = i_1 + 1;

<bb 4>:
 # i_1 = PHI <i_3(2), i_7(3)>
 # result_2 = PHI <result_4(2), result_6(3)>
 D.1733_5 = i_1 <= 2;
 if (D.1733_5 != 0)
 goto <bb 3>;
 else
 goto <bb 5>;

<bb 5>:
 D.1243_9 = result_2;
 return D.1243_9;
}

SIGNAL Code

process whileCode = (? integer n_5;
!integer out1)

(| n_5bufz := n_5buf $ init 0
 | n_5buf := n_5 when (label_past = #bb2) default n_5bufz
 | label_past := label1 $init #bb2
 | label1 :=
#bb3 when (label_past = #bb4) and (i_1z <= 2) default
#bb4 when (label_past = #bb2) or (label_past = #bb3) default
#bb5 when (label_past = #bb4) and (i_1z > 2) default
#bb2
 | result_6 := result_2z * n_5buf
 | i_7 := i_1z + 1
 | D01243_8 := result_2z
 | i_1z := i_1 $ init 0
 | result_2z := result_2 $ init 1
 | i_1:= i_3 when (label1 = #bb2) default
 i_7 when (label1 = #bb3) default i_1z
 | result_2:= result_4 when (label1 = #bb2) default
 result_6 when (label1 = #bb3)default result_2z
 | out1 := D01243_8 when (label1 = #bb5)
 | n_5^= when (label_past = #bb2)
 | i_1 ^= i_1z ^= result_2 ^= result_2z ^= label1 ^= label_past
 |)
where
 integer result_6; integer i_7; integer i_1; integer result_2; integer
D01243_8;
 integer n_5buf, n_5bufz;
 integer i_1z;
 integer result_2z;
 type lbl = enum (bb2, bb3, bb4, bb5);

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
27

 lbl label1, label_past;
 constant integer i_3 = 0;
 constant integer result_4 = 1;
end;

4.1.3.4 Extended Report: Automatic Conversion of C code to SIGNAL code, March 2012
update

4.1.3.4.1 Introduction
The C to SIGNAL tool which was developed, generated a long SIGNAL program with a large
number of variables. With the goal to get a small SIGNAL program with few variables, the
existing tool was modified. The first step involving converting the C code to its Static Single
Assignment form remains the same. The second step of converting the SSA to SIGNAL has been
changed to achieve an optimized SIGNAL program.

4.1.3.4.2 SSA To SIGNAL Conversion
The generated SSA is parsed and relevant information is stored. The way the SIGNAL program
is generated from the information stored has changed.

4.1.3.4.3 SSA Blocks
The SSA blocks which correspond to the different states of the program remain the same. An
additional <bb 0> state is added to the list of states. The <bb 0> state corresponds to initial state
from where the program enters.

type lbl = enum (bb0,bb2, bb3, bb4, bb5);
lbl label1, label_past;

label_past is the delayed version of label1. label1 and label_past are used to describe the state
transitions which handle the control flow based on the conditions.

|label_past := label1 $init #bb0

4.1.3.4.4 PHI function
The PHI function is used to decide the final value of the variable based on the value of the basic
block. The PHI functions are transformed to “when...default" statements in SIGNAL. The
optimization in the SIGNAL code is achieved by substituting the variables from the assignment
statements.

 |f := fNbuf when (label1 = #bb2) default
 (fz+ -10) when (label1 = #bb4) default
 (fz+10) when (label1 = #bb5) default
 fz

4.1.3.4.5 Conditional statements
The conditional statements have not been changed. They represent the branching to a different
block based on certain conditions.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
28

4.1.3.4.6 Code Example
An example C program, its corresponding SSA and the SIGNAL program are given below.

C Code

int whileIf (int n, int f)
{
 int i = 0;
 while(i<3)
 {
 if(f > 100)
 {
 n = n+2;
 f = f-10;
 i++;
 }
 else
 {
 n= n-2;
 f= f+10;
 i++;
 }
 }
 return n;
}

SSA Form

;; Function whileIf (whileIf)

whileIf (int n, int f)
{
 int i;
 int D.1256;

<bb 2>:
 i_4 = 0;
 goto <bb 6>;

<bb 3>:
 if (f_2 > 100)
 goto <bb 4>;
 else
 goto <bb 5>;

<bb 4>:
 n_7 = n_1 + 2;
 f_8 = f_2 + -10;
 i_9 = i_3 + 1;
 goto <bb 6>;

<bb 5>:
 n_10 = n_1 + -2;
 f_11 = f_2 + 10;
 i_12 = i_3 + 1;

<bb 6>:
 # n_1 = PHI <n_5(D)(2), n_7(4), n_10(5)>
 # f_2 = PHI <f_6(D)(2), f_8(4), f_11(5)>

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
29

 # i_3 = PHI <i_4(2), i_9(4), i_12(5)>
 if (i_3 <= 2)
 goto <bb 3>;
 else
 goto <bb 7>;

<bb 7>:
 D.1256_13 = n_1;
 return D.1256_13;

}

SIGNAL program

process whileIf = (? integer nN, fN; !integer out1)

(|nNbufz := nNbuf $ init 0
 |nNbuf := nN when (label1 = #bb2) default nNbufz
 |fNbufz := fNbuf $ init 0
 |fNbuf := fN when (label1 = #bb2) default fNbufz
 |label_past := label1 $init #bb0
 |label1 :=
#bb2 when (label_past = #bb0) default
#bb3 when (label_past = #bb6) and (iz <= 2) default
#bb4 when (label_past = #bb3) and (fz > 100) default
#bb5 when (label_past = #bb3) and (fz <= 100) default
#bb6 when (label_past = #bb2) or (label_past = #bb4) or (label_past = #bb5)
default

#bb7 when (label_past = #bb6) and (iz > 2) default #bb0

 | i := iL when (label1 = #bb2) default
 (iz+1) when (label1 = #bb4) default
 (iz+1) when (label1 = #bb5) default
 iz
 | iz := i $ init 0

 |n := nNbuf when(label1 = #bb2) default
 (nz+2) when (label1 = #bb4) default
 (nz-2) when (label1 = #bb5) default
 nz
 |nz := n $ init 0

 |f := fNbuf when (label1 = #bb2) default
 (fz+ -10) when (label1 = #bb4) default
 (fz+10) when (label1 = #bb5) default
 fz
 |fz := f $ init 0

 |out1 := nz when (label1 = #bb7)

 |nN ^= fN ^= when (label1 = #bb2)
 |i ^= iz ^= n ^= nz ^= f ^= fz ^= label1 ^= label_past ^= nNbuf ^= fNbuf
 |)

where
 integer i, iz, n, nz, f, fz, D01246_13, nNbuf, nNbufz, fNbuf, fNbufz;
 constant integer iL = 0;
 type lbl = enum(bb0, bb2, bb3, bb4, bb5, bb6, bb7);
 lbl label_past, label1;
end;

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
30

4.2 Development of Behavioral Type Inference Algorithm as a proof
technique for Trustworthy composition

4.2.1 Reduction of behavioral type inference to Prime Implicate
extraction problem.
Section 4.1 defined a weak-hierarchic process as the composition of endochronous processes.
Using the code generation designed for endochronous processes and the decomposition strategy
of this section to generate a composition of threads seems to be the right idea. This idea makes
more sense in light of a trivial example, the parallel copy (|x:=a|y:=b|). The implementation can
obviously be done using two threads and the absence of communication makes the endochronous
code generation perfect for this translation. However, this approach brings two new problems:
The first one is to find a good decomposition. Theory tells us that a composition of endochronous
processes is weak-hierarchic and can be compiled, but given a weak hierarchic process how to
find the good decomposition and the elemental pieces of endochronous code is an issue. The
second problem is to manage the communication between the threads; shared variables need
asynchronous synchronizations.

4.2.1.1 Semantic of the problem

4.2.1.1.1 Polychronous Elements
This section, introduces some formal definitions to precisely define the concepts of Polychrony.
Informally, in a polychronous component, the clock of a signal is a sequence of logical instants at
which the signal is computed or assigned new values. Not all signals at the interface are
computed or assigned input values at every logical instant. A logical instant can be thought of as
a maximal set of computation activities in reaction to one or more input changes.

This set of activities is maximal in the sense that any other activity would require another value
to arrive on those inputs which triggered the current set of activities. Also, the computational
activities in a reaction are partially ordered based on data dependency. If an activity produces
data that another activity consumes immediately, they will be appropriately temporally ordered.
However, from outside of the system, one cannot see the intermediate computations or interrupt
them, until the reaction is completed. So the notion of a logical instant is not related directly to
Newtonian time, but it denotes a set of activities triggered by one or more triggers, and it extends
until a reaction is over. The next logical instant starts when another reaction is triggered.

Since not all signals participate in activities in all logical instants because their computation may
be guarded by Boolean conditions, availability of inputs they react to, etc., the set of logical
instants for each signal might be different. Also the polychronous model allows us to express
concurrent computations; thus some of the activities may be concurrent and hence belong to a
different sequence of reactions. For every signal – the set of logical instants (possibly infinite)
that it participates in – is its clock. Thus signals may have different clocks; hence the model of
computation is called polychronous or “multi-clocked”.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
31

The signals at the interface therefore may be partitioned into classes and those who always
participate in activities in the exact same logical instants are said to be synchronous with each
other. Signals that participate in a subset of logical instants that another signal partakes in are said
to be subclocks. Signals whose clocks are unrelated evolve asynchronously with each other. So
one may find some signals always having new inputs arriving on them in the same logical
instants, some signals have inputs arriving only in a subset of logical instants, and some might
have inputs arriving in unrelated logical instants. All of these are captured in clock relations.

Definition 14 (Event) Ξ is used to denote the set of all events. ≤ is a preorder on Ξ: e≤f means
that e occurs before or concurrently with f. ∼ is the equivalence relation based on ≤: e∼f means
that e and f occur simultaneously hence termed synchronous events.

Definition 15 (Logical Instant or Instant) Υ is used to denote the quotient of Ξ by ∼ as the set of
instants. Thus a logical instant is a maximal set of events that are synchronous.

Note that synchronous events may have a data dependency and hence may have a partial order
inside the instant, different from ≤. This different order serves in the generation of sequential
code which is not considered in this paper.

Definition 16 (Partial order on Instants) Υ /≤ is the partial order on instants based on Ξ/≤: ∀a,
b∈ Υ, a ≤ b ⇔ ∃ α ∈ a, β ∈ b| α ≤ β

The above definition lifts the ≤ and the corresponding strict order < to the set of logical instants
so one can compare the order of happening of some of the logical instants. The entities of the
model are signals, defined on instants. A signal is a succession of values, happening at some
specific instants. This specific succession of instants is the clock of the signal.

Definition 17 (Signal, Epoch and Clock) Let T be a set of values – the type and T⊥=T∪{⊥} its
extension with a special value meant to represent absence, a signal is a function Υ → 𝑇⊥
depending on a set of instants, its epoch.

For a given signal, there exists one maximum set of instants γ⊂ Υ such that γ is a total order in Υ
and the signal associates a value from T to each instants of γ. Such a set is called the epoch of the
signal, σ(x) represents the epoch of the signal x.

Let us define the clock of a signal, a characteristic function that tells if a signal x is present or
absent at any given instant t in Υ. Clock is a function (Υ → 𝑇⊥) → Υ → {𝑡𝑟𝑢𝑒, ⊥ } such that for
a signal x returns another signal (x ) defined by: x (t) =true if x(t)∈T and x (t)=⊥ if x(t)=⊥

The notation x(t0

x) for the value for signal x at its initial logical instant is used. It is defined as
such: Tx(t0

x)∈ and ∀𝑡 ∈ Υ, 𝑡 < 𝑡𝑥0 ⇒ 𝑥(𝑡) = ⊥ .

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
32

The notation x(t−1
x) for the previous value of a signal at a given instant is used. It is defined as

such: for all t∈ Υ such that x(t)∈T and t=t0
x, yields 𝑡𝑥−1 ∈ Υ such that x(t−1

x)∈T and ∀𝑝 ∈ 𝑌, 𝑡𝑥−1 <
𝑝 < 𝑡⇒ 𝑥(𝑝) = ⊥ .

4.2.1.1.2 The Process and its logical Interpretations

Definition 18 (Dataflow Process) A dataflow process P= (G, I, O) is defined by G, a directed
graph in which edges are signals and nodes are dataflow actors, I is an inputs set and O is an
outputs set; I and O are sets of signals. In the future, S will be defined as the set of signals of the
process P, i.e. the set of edges of the graph G and E the set of epochs of every signal of S.
Dataflow actors are either sub-processes (sG, I, O), either basic operators. Sub-processes are
defined by a dataflow graph sG and have ports to access their input and output sets. These are
called input ports and output ports.

There are four basic operators which also have input and output ports and they are defined as
follow:

• A function (r = f(a,..,n)) calculates a result r from one or more operands a,..,n. The types
of those signals depend on the function. The result is defined by r(t)=f(a(t),b(t)).

• A delay (r = a $ init n) stores the current value of a and emits on r the previous stored

value when a is present. On the first instant of a, the value n is emitted. The result is
defined by r(t)=a(t−1

a) when t>t0
a and r(t)=n when t=t0

a.

• A sampler (r = a when b) transmits the values from a signal a to a signal r but only when

the sampling signal b is true. The result is defined by r(t)=a(t) when b(t)=true and r(t)=⊥
when b(t)≠true.

• A merge (r = a default b) transmits to r the values from the signals a and b whenever they

are present with a priority to b when both are present. The result is defined by r(t)=r(a)
when r(a)≠⊥ and r(t)=r(b) when r(a)=⊥.

The signals of the dataflow process connect zero or one output port and zero or one input port of
any actor. Signals from the inputs set I necessarily connect no output port (undefined signals)
and signals from the output set O necessarily connect one output port (define signals). Therefore,
I∩O=∅.

Definition 19 (Epoch system of a Process)
From a Dataflow Process P, one may construct a Boolean Theory BP where axioms are
equalities between Boolean formulas. Those formulas, which imply variables that represent
epochs and Boolean conditions on signals, are defined by the basic dataflows operators as
described in the second column of Figure 10. The idea behind this construction is that it can be
used for a Prime Implicate (PI) minimization. The PI minimization produces a theorem where

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
33

propositions are Boolean formulas in Conjunctive Normal Form and extract the essential Prime
Implicates of the formulas.

Definition 20 (Well-clocked Process) A process is said to be well clocked if the Boolean theory
attached to it contains no contradiction.

Example 5 Counterexample y1 = 1 when x y2 = 1 when not x z = y1 + y2
by1 = 1 and x=1 by2 = 1 and x=0 bz = by1 = by2 x = [x] ou [-x] [x] and [-x] = 0

models: (bx and [x])=(bx and [-x]) bx = false

Definition 21 (Dependency Graph of a process)
A dependency graph is a labeled directive graph where the nodes are signals and the edges
represent dependencies relations between signals at some sets of instants. At each instant in a
dataflow process, the events that are involved are ordered by an order relation: the dependency
relation: ⇁. This relation means that one event can only happen after one other, for example if
one signal y is a copy of the signal x, the two synchronous events y(t) and x(t) are connected by
the relation yx⇁ . The relation ⇁ defines a graph for each instant. The relation →𝑎 defined
by ∀𝑥,𝑦 ∈ 𝑆,∀𝑎⊂𝑌, 𝑥 →𝑎 𝑦, iff ∀𝑡 ∈ 𝑎, 𝑥(𝑡)¬𝑦(𝑡) defines a graph for the whole process.

This graph can be directly constructed from the basic dataflow operators of the process, refering
to the third column of the table shown in Figure 10.

Dataflow actor Epoch / Boolean Relations Data Dependencies
Function σ(a)=σ(b)=σ(r) a→σ(a)r
r=a ⋆ b ba=bb=br b→σ(b)r
Buffer σ(a)=σ(r) No dependency
r=b$ init n ba=br
Sampler σ(r)=σ(a)∩σ(b=true) a→σ(r)r
r=a when b br=baandb[b], bb=b[b]or[−b]
 b[b]and[−b]=false
Merge σ(r)=σ(a)∪σ(b) a→σ(a)r
r=a default b br=baorbb a→σ(b)−σ(a)r

Figure 10: Formal definitions of Dataflow Actors

4.2.1.2 Clock tree decomposition using Prime Implicate theory
Given a theory of Boolean formulas that represent the clock relations of a specification, the
master trigger is a signal whose clock is necessarily true whenever any other term is true. In an
endochronous process it corresponds to a signal that has the greatest epoch. In a PI minimization,
the variable that corresponds to a master trigger appears as a prime implicate since it can nullify
the whole theory.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
34

In a weak-hierarchic process, the set of epochs are not totally ordered and there is no master
trigger. One can find a set of signals for which the sum of the epochs covers the set of instants of
the process. Again, such a set of signals would appear in a PI minimization. These called partial
triggers.

4.2.1.2.1 Finding the Master trigger of a specification
In [1], the authors show an algorithm to extract the master trigger of a process when it exists and
prove that the existence of this signal is a necessary condition for sequential implementation of a
specification. This condition implies that there is a signal that has events in every instant, thus the
set of instants is totally ordered. It is related to the property of endochrony of a process.

Definition 22 (Master Trigger) Let P be a well-clocked Dataflow Process and υ the set of
instants of the process. Let x be a signal from I (the input set of P) with σ(x) as its epoch and the
properties that for each instant t∈υ, t is in σ(x), and there is no s∈υ for which the dependency
graph of the process has a causal cycle. Then x will be termed the master trigger.

This definition is deduced from the definition of endochrony that states that an endochronous
process contains a master clock. A process which is endochronous can be sequentially
implemented, as [1] proved that a process that has a master trigger is endochronous and can be
sequentially implemented.

Theorem 4 (Existence of Master Trigger) Given a well-clocked Dataflow Process P such that the
dependency graph of P has no cycles, let BP denote the system of Boolean equations derived from
the actors. A signal x in I (the input set of P) is a master trigger if and only if its corresponding
Boolean variable bx in BP has the property that if bx is false, every other variable is false
(∀by∈BP,bybx).

Proof: In Figure 10, the definition of epochs and Boolean Theory implies that the hypothesis
σ(y) ⊂ σ(x) and by ⇒ bx are equivalent.

Since the epoch of a master trigger x contains all instants of the process, for any signal y in P,
then σ(y) ⊂ σ(x). Thus by ⇒ bx.

∃ x ∈ P, ∀ y ∈ P, by ⇒ bx implies, ∃ x ∈ P, ∀ y ∈ P, σ(y) ⊂ σ(x). Under the condition of no-
dependencies, it also implies that x is a master trigger of P.

Theorem 4 can be exploited in two ways. First if a master trigger exists, a PI minimization of the
Boolean equations would detect this master trigger as a positive literal among the Prime
Implicates. Second, if a Prime Implicate is found and if the other criteria are met (no cycles in
dependency graph and well-clocked), the process can be sequentially implemented.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
35

4.2.1.2.2 Finding sets of partial triggers of a specification
Weakly-hierarchic processes were defined in [49]. These are an extension of endochronous
processes. They do not aim to be implemented as sequential pieces of code but instead they can
be implemented as a set of sequential threads. The endochronous processes are a special case
where there is only one thread. From the definition, a weakly-hierarchic process is a composition
of endochronous subprocesses. Thus, when an endochronous process has a master trigger, a
weakly-hierarchic process has a set of partial triggers, each one having the greatest epoch among
its own subset of signals.

Informally, the search is for a set of signals that act like master triggers of their own sub-
processes (partition of process).

Definition 23 (Set of partial triggers) A set of partial triggers is a set of signals such that when
one of the partial triggers is absent, any of the others can be present but when all partial triggers
are absent, all signals of the system are absent.
Let P be a Dataflow Process and υ the set of instants of the process. Let {x1,..xn} be a set of
signals from I with σ(x1),..,σ(xn) as their epoch and the properties that

• for each pair xi,xj∈{x1,..xn}, σ(xi)⊂σ(xj),

• for each signal y∈P, there is at least one trigger x∈{x1,..xn} such that σ(x)⊃σ(y).

• there is no s∈υ for which the dependency graph of the process has a causal cycle.

Then {x1,..xn} will be termed the set of partial triggers for P.

Theorem 5 (Weak Hierarchy of a process) A process that has a set of partial trigger is weakly
hierarchic.

Proof: The authors of [53] define a composition of endochronous processes that is acyclic and
well clocked to be weakly hierarchic.
Let P be a Dataflow Process which has a set of Partial Triggers.

For each signal y ∈ P, there is at least one trigger x ∈ {x1,..xn} such that σ(x) ⊃ σ(y). This
describes a partition of the process in subprocesses. For each trigger xi, there is a set of signals
that form a subprocess Pi. The dependency graph of P has no cycle and the dependency graph of
Pi is a subgraph of it. Pi is acyclic. Pi has a master trigger xi; it is endochronous. P is by definition
acyclic and well-clocked.

Theorem 6 (Discrimination of a set of Partial Trigger) Given a well-clocked Dataflow Process P
such that the dependency graph of P has no cycle, let BP denote the system of Boolean equations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
36

derived from the actors. A set of signals S={x1..xn} is a set of partial triggers if and only if
∀ y∈ P, ∃ x∈ S such that y=0x=0 and there is no pair x1,x2∈S such that bx1=0bx2=0.

Proof: Like in theorem 4, this is the translation of the definition through the equivalency of σ(y)
⊂ σ(x) and by ⇒ bx.

Theorem 6 can be exploited the same way as theorem 4, i.e. a PI minimization of the Boolean
Theory would detect a set of partial triggers and prove the implementability.

4.2.1.2.3 Scheduling the threads
Scheduling a thread involves strictly ordering events and refining two partial orders. One is based
on definitions from the epoch system of the process and the other from the data dependency
graph. The first order is extracted from the definitions of epochs in a structure called the
Followers Set. The second order is used to reinforce the order between events of the same epoch
based on the dependency graph.

Each trigger is the head of one of the main threads; this means each one of the partial triggers
generates one thread. The event that happens at the epoch of the trigger has to happen at each
instant. This set of events can be tied by data dependencies and the graph can be used to schedule
them. For example, the simple process x=y has only two events x(t) and y(t) at the instant t. The
epoch calculus and a trivial PI minimization tell us that x is the master trigger, and x and y have
the same epoch. Then the graph dependency tells us that for any instant of σ(x), there is a
dependency x→y. The thread will therefore begin with the event x(t) by reading the value of the
input x and then continue with the event y(t) by attributing the value to the output y and emitting
it. More likely, the thread has to manage several different epochs; those epochs are all subsets of
the epoch of the trigger and can be ordered in a structure that will be called the Follower Set.

Definition 24 (Followers Set) The Follower set of a trigger is a sequence of sets of epochs with
the following property: in a Boolean Theory BP of a process P, α belongs to the nth element of the
Followers Set of a trigger x, if there is a formula in BP that defines α with only epochs of lesser
elements in this followers set.

The first element of a Followers Set contains the epoch of the trigger. This is the first level of the
thread. At this level, all the signals that share this epoch, ‘the first element of the followers set’,
are known to be present and the epochs of the second level of the Followers Set can be evaluated.

Theorem 7 (Construction of the Follower set of an Endochronous Dataflow Process) The
construction of a follower set is also based on a Prime Implicate minimization.

The follower set of the master trigger xi is obtained by searching the Prime Implicant of
successive boolean equations system BM', BM'', .. in which the previous elements are set to true.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
37

The first element of this follower set, FS1 is xi, PI of BM. The second element FS2 is the set of PI of
BM'=BM∪(∀x∈FS1,x=1), the third element is the set of PI of BM''=BM'∪(∀x∈FS2,x=1) and so on.

4.2.1.3 Shared Epoch
Communication in a multithreaded code generation requires synchronizations. In polychronous
specifications, the synchronization is materialized by shared epochs, i.e. epochs that are subset of
several roots. In a multithreaded implementation, the use of a synchronization barrier is needed to
synchronize the shared epochs in order to protect the signals that are used in multiple threads.

Definition 25 (Shared Epoch)
Shared epochs in a weakly hierarchic specification are epochs of signals that can be accessed by
several threads or calculations that use signals from several threads. Because each thread has its
own main epoch and because a shared epoch is a subset of those epochs, it acts as a recurrent
meeting between the threads. In an asynchronous implementation, this is materialized by a
synchronization barrier. A variable that is present within a shared epoch is shared between the
different threads that synchronize at this epoch. In particular, it can be defined with data from
those threads.

The epoch of a shared variable is defined in the epoch of each thread that accesses it, and thus it
should belong to the follower sets of the partial triggers of those threads. On the other hand, the
algorithm described above rejects the shared epoch from their follower sets because when only
one root is set to be present, shared epochs that belong to several partial triggers are necessarily
absent. The basic detection of shared epochs requires building follower sets for each combination
of roots, which is a waste because not all combinations own a shared variable. Use of a finer
detection involving direct identification of the shared epochs and a generation of their follower
sets is more efficient.

Definition 26 (Shared epochs) Shared epochs are epochs that can be present only if at least two
partial triggers are present.
Because they synchronize several hierarchies, shared epochs have one definition in each of those
hierarchies.
Property 1 (Identifications of shared epochs) Consider shared epochs, clocks of signals
defined by least two equations that individually appear in different follower sets.

In practice, for each epoch defined by several equations, the root of each individual equation is
extracted. If the partial triggers are different, the equations define a shared epoch if the roots are
identical; the equations define a clock constraint in one of the follower sets, which may
compromise the code generation.

Once shared epochs have been identified, it is possible to add in each concerned follower set a
representative of this epoch and mark it as a synchronization point. One can then use each
follower set to generate its own sequential code and place barrier synchronization at the marked
epoch. This will create a set of threads that synchronize at each instant of the shared epoch.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
38

4.2.1.4 Distribution of events into threads
Theorem 8 (Construction of the Follower sets of a Weakly hierarchical Dataflow Process) The
construction of a follower set for a weakly hierarchic process is close to the previous one except
that each partial trigger and each shared variable has its own follower set. The follower set of
the partial trigger xi is obtained by searching the Prime Implicant of successive boolean
equations system BM', BM'', .. in which the previous element is set to true and other roots are set
to false.

The first element of this follower set, FS1 is xi, PI of BM∪(∀x∈roots(M),x≠x1x=0)
The second element FS2 is the set of PI of BM'=BM∪(∀x∈FS1,x=1), the third element is the set of
PI of BM''=BM'∪(∀x∈FS2,x=1) and so on.

The events of the process have to be distributed into several threads with respect to the different
orders. The threads are synchronized with barrier, which means that the synchronization points
have to be a minimum. The starting points of the threads are the partial triggers and the shared
variables. Partial triggers are independent, they are not clock-related and the events at those
epochs are not data-dependent with each other. The most efficient implementation is to have the
set of events of each partial trigger in the same thread. Shared epochs, which are sub-clocks of
several partial triggers, have their own threads and are synchronized with the main thread via a
synchronization barrier.

Theorem 9 ensures that each event of the process belongs to exactly one thread.

Lemma 2 All events belong to one epoch that is a subclock of a master trigger.
If one event belongs to one epoch that is a subclock of several master triggers, this epoch is also
a subclock of a shared epoch.

Theorem 9 (Placement of event in threads)
Let’s suppose that M is a weakly hierarchical process with {Ci} its roots and {Csi} its shared
epochs, define Ti as the thread attached to the partial trigger Ci and Tsi the thread attached to
the shared variable Csi. Following the data dependency graph, every event that has no incoming
dependency and belongs to the subclock of only one master trigger Ci are put in Ti. Events that
have no incoming dependency and belong to a shared epoch Csi are put in Tsi. Events that have
dependencies from only one thread are put in this same thread. Events that have dependencies
from two threads, of two triggers Ci and Cj, must belong to one shared epoch Csi and are put in
Tsi, behind a synchronization barrier. Events that have dependencies from two threads, one of
trigger Ci and one of shared Csi, are put in the thread of the trigger, Ti, behind a
synchronization barrier.

4.2.1.5 Algorithm
The code synthesis algorithm for Prime Implicate based sequential code generation is provided in
Figure 11.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
39

Types
 Epoch
 Epoch List
 Event % a basic operation like read, write of IO or affectation of a variable
 Node % a pair of one epoch and one event
 Node List
 Process % contains Nodes
 BooleanTheory % Boolean theory of a process, contains Epochs and relations between
them
 DepGraph % Dependency graph of a process, contains Nodes and relations between them
 Code % A basic block of code
 Code List % A Thread

Methods
 % returns the list of events at the epoch of epl
 Node List nodeAt(Epoch epl, Process p);

 % returns the list of nodes of G that have no precedent
 Node List headsOfGraph(DepGraph& pointer_g);

 % returns the list of PI of a BooleanTheory
 Epoch List primeImplicant(BooleanTheory b);

 % returns a new Boolean theory derived from b where e is set to True
 BooleanTheory setToOne(BooleanTheory b, Epoch List epl);

 % add items at the end of list

 x List addToList(x List list, x item);

 % remove e from g and link dependencies
 removefromGraph(depGraph& pointer_g, Event e);

 % returns the block of code of a node (if epoch then event)
 Code code(Node n);

codeGen(Process& pointer_p, Code List& pointer_t, DepGraph& pointer_g, BooleanTheory b)
{
 Epoch List epl = primeImplicant(b)
 Node List nl = intersection(nodeAt(epl,p),headsOfGraph(g))
 while(nl != null)
 foreach(Node n in nl)
 {
 addToList(t, code(n))
 remove(g,n)
 nl = intersection(nodeAt(epl,p),headsOfGraph(g))
 }
 BooleanTheory b2 = setToOne(b,epl)
 codeGen(p, t, g, b2)

 nl = intersection(nodeAt(epl,p),headsOfGraph(g))
 while(nl != null)
 foreach(Node n in nl)
 {
 addToList(t, code(n))
 remove(g,n)
 nl = intersection(nodeAt(epl,p),headsOfGraph(g))
 }
}

Figure 11: Recursive Algorithm for Prime Implicate based sequential code generation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
40

Example 6 Code generation of a weakly endochronous process. Here is an extract of generated
multi-threaded code. The code contains three different threads: thread one and two are the main
concurrent process of the program, thread_3 is the common subprocess, with the shared epoch.
Synchronization is obtained with two barriers that protect the critical variable ‘z’.

#include <pthread.h>

pthread_barrier_t barr_1;
pthread_barrier_t barr_2;

int main()
{
 pthread_t thr_1;
 pthread_t thr_2;
 pthread_t thr_3;

 // Barrier initialization
 if(pthread_barrier_init(&barr_1, NULL, THREADS))
 {
 printf("Could not create barrier 1\n");
 return -1;
 }
 if(pthread_barrier_init(&barr_2, NULL, THREADS))
 {
 printf("Could not create barrier 2\n");
 return -1;
 }

 // threads creation
 if(pthread_create(&thr_1, NULL, &thread_1, NULL))
 {
 printf("Could not create thread 1\n");
 return -1;
 }
 if(pthread_create(&thr_2, NULL, &thread_2, NULL))
 {
 printf("Could not create thread 2\n");
 return -1;
 }
 if(pthread_create(&thr_3, NULL, &thread_3, NULL))
 {
 printf("Could not create thread 3\n");
 return -1;
 }
}

void * thread_1()
{
 boolean code;
 EXTRACT_1_initialize();
 while(code)
 {
 code = EXTRACT_1_step();

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
41

 }
 EXTRACT_1_Close();
}

boolean EXTRACT_1_step()
{
 if (!r_adder_a(&a)) return FALSE;
 x = a;
 w_adder_x(x);

 C_CLK_101 = (C_a ? (a == 0) : FALSE);

 ` if (C_CLK_101)
 {
 pthread_barrier_wait(barr_1);
 pthread_barrier_wait(barr_2);
 }
}

void * thread_2()
{
 boolean code;
 EXTRACT_2_initialize();
 while(code)
 {
 code = EXTRACT_2_step();
 }
 EXTRACT_2_Close();
}

boolean EXTRACT_2_step()
{
 if (!r_adder_b(&b)) return FALSE;
 y = b;
 w_adder_y(y);

 C_z = b == 0;
 if (C_z)
 {
 pthread_barrier_wait(barr_1);
 pthread_barrier_wait(barr_2);
 }
}

void * thread_3()
{
 while(code)
 {
 code = EXTRACT_3_step();
 }
}

boolean EXTRACT_3_step()
{

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
42

 pthread_barrier_wait(barr_1);
 z = x + y;
 w_adder_z(z);
 pthread_barrier_wait(barr_2);
}

4.2.1.6 Non blockage of weak-hierarchic composition
Given the definition of weak hierarchy, a weakly hierarchic composition has to be non-blocking.
This means that the components that are composed must not contradict in signal definitions or
add dependency cycles. This can be treated with a strong but sufficient property.

Theorem 10 (Strong condition for non blocking compositions of Hierarchies) A composition of
processes is non-blocking if for all set of k processes which share j variables, j<k.

Proof: It is shown that both conditions of a blocking composition falsifies the theorem.

Let us suppose that a composition of processes has a cycle. There exists a minimal set of k
processes that supports the cycle k > 1 because each process is acyclic. This cycle can be
decomposed in j elemental dependencies with j ≥ k because each process supports a part of the
cycle, and these dependencies involve exactly j variables (suppose that a variable can appear only
once because dependency is a transitive relation and any loop can be reduced to a loop in which
the variables are all different). The set of k processes shares j variables and j < k.

Proving well-formed hierarchy has a similar approach. Suppose that a composition of processes
is ill-formed. This means that at least two variables x, y are exclusive and both super-clock of a
third one z. x and y being exclusive means that there exists a w that is a super-clock of x and y.
There are now four relations of inclusions involving four variables. Since each process is well
formed, it means that those relations come from several processes (two, three or four). In the
fewest possible cases, the number of shared variables is always at least equal to the number of
processes.

Since the shared epochs are clearly identified by their equations, this property can be checked
directly during code generation.

4.2.2 Investigate if SAT Modulo Theory (SMT) techniques will refine
behavioral Types

4.2.2.1 Problems
1. Large scale examples will take lot of time if one uses entire MRICDF/SIGNAL

specifications for verification of any property. As an example, causal loop detection was
checked.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
43

2. Identification of safe-operating area for a faulty system.

4.2.2.2 Investigated Methods
1. SMT Approach.

2. Polyhedra Approach.

4.2.2.3 Anticipated problems and future work
1. Investigated techniques will approximate any floating point data as integer data to the user

defined precision. No open-source floating point polyhedral libraries exist as of now.
Yices internally converts floating point to integer data. So high precision analysis might be
problematic.

2. Investigated techniques will not work if there are non-linear constraints. Currently a non-
linear constraint solver from MIT is being considered. No results as of now.

4.2.2.4 Extended Report: Investigate if SAT Modulo Theory (SMT) or other decision
making techniques will refine behavioral Types
In Section 4.1.2 it was shown how to extract behavioral type information from the MRICDF
models. After extraction of this information various kinds of analyses need to be performed such
as causal loop detection, race condition check, and verification of other safety properties to
ensure that the composition of the modules is compatible. The effort investigated the use of
various decision-making tools to check these properties including SAT Modulo Theory (SMT),
solvers, and later on Polyhedra libraries. An explanation of each work with their advantages and
limitations is captured below.

4.2.2.5 SMT based safety property checking
This section shows how one can use SMT solvers for checking a particular safety property –
causal loop detection. The approach is generic and can be used to verify most of the properties. In
one of the earlier works [10], causal loop detection was done by generating SMT equations for
the entire MRICDF model and this set of equations was given as an instance for the SMT solver.
The disadvantage of [10] is that for a large scale example, the SMT instance will become huge
and can lead to long running times – sometimes never ending. In this work, the first step is to
mine the specifications for possible causal loops. The next step is to express the clock constraints
of the dependencies as SMT equations and check if all the equations can be true at same time or
not by evaluating the SMT instance. If the SMT instance evaluates to true, then there exists a
causal loop, otherwise no.

An example will now illustrate this work. For the reason of expressiveness, Signal and
Polychrony are used instead of MRICDF and EmCodeSyn. Consider the Signal code of Listing 1:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
44

Listing 1: Constructive Causal Loop
process causal -smt =
(? integer initial , step 1, intMin ;
! integer min , avg , max;
)
(| initial ^= step 1 ^= intMin ;
|min := initial when intMin <5 default avg - step 1
|avg := min+ step 1 when intMin =10 default max - step 1
|max := avg + step 1 when intMin >10 default initial
|);

The code is compiled using Polychrony to check for the presence of possible causal loops. From
the code in Listing 1, it is observed that when isMin is true, then avg depends on max, and max
depends on avg causing a true causal loop. Similarly when isMin is false, then avg depends on
min, and min depends on avg causing another true causal loop. Once the possible causal loops
have been identified, the information regarding clock constraints is mined leading to the potential
causal loops. After mining the clock relations are encoded as SMT equations and a SMT instance
is constructed and tested for satisfiability. The clock relations are shown in Listing 2.

Listing 2: Clock relations
% Loop 1
(|{ avg --> max } when C_CLK _0
|{ max --> avg} when C_ CLK _1
|)
% Loop 2
(|{ min --> avg } when C_CLK _2
|{ avg --> min} when C_ CLK _3
|)
where , C CLK 0 := :(intMin = 10), C CLK 1 := intMin > 10,

C CLK 2 := :(intMin < 5) and C CLK 3 := (intMin = 10)

Note that there are two sets of clock relations showing two possible true causal loops.

Any SMT constraint solver enriched with integer theories can be used. The latest YICES SMT
solver [44] has been used as the constraint solver in this work. Translating the above clock
relations as YICES input derives the equations in Listing 3.

Listing 3: SMT equations for Loop 1
;; Loop 1
(define intMin :: int)
(assert (and (not (= intMin 10)) (> intMin 10)))
(check)

Result :- sat (= intMin 11)

;; Loop 2
(define intMin :: int)
(assert (and (not (< intMin 5)) (= intMin 10)))

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
45

(check)

Result :- sat (= intMin 10)

Invoking YICES on these equations will give a SAT result as explained earlier. Also, YICES
provides a counter example (intMin=11 & intMin=10) where the constraint is satisfied which
matches with our earlier interpretation. Hence there exist true causal loops in the specification
shown in Listing 1 and one possible way they can be formed is when intMin=11 & intMin=10. If
YICES had given an UNSAT result, then one would conclude that the property is not satisfied
and hence it is a false causal loop. Similarly any safety property can be expressed as an SMT
instance and verified.

4.2.2.5.1 Limitations of this approach
Safety property verification such as causal loop detection is not a trivial problem. Given a data
dependency loop, the complexity of checking if it is truly causal or not is at least NP-hard. If all
inputs are Boolean signals, and the dependencies can be expressed as Boolean functions using
ANDs and ORs and NOTs, then the problem would be the same as solving a SAT instance,
which is NP-Complete. However, if the dependencies are able to be expressed as arbitrary
functions over integers or reals or other complex data types, the problem is undecidable. This
shows that any method used in verification must be based on heuristics and is likely not
complete. One must strive for as close to a complete a solution as possible, while not
compromising on the soundness of the solution. This is what has been done in this work. Another
limitation of this work is that only non-floating point and linear constraints are handled. This
results from YICES limitations, and is not a result of the approach taken here. Lastly, another
shortcoming of this work is that if a property fails, the tool currently outputs only one of the
many possible scenarios where the property will fail and not all of the scenarios where the
property fails.

4.2.2.6 Polyhedra based safety property checking
This work tries to preserve the advantages of the SMT based approach and addresses minimizing
its disadvantages. If the synthesized software has to interact with a physical environment, often
additional range constraints on various inputs as well as outputs are provided. Analyzing the
safety of execution often leads to analysis of reachability, invariants, and cyclic dependencies
which may be affected by such range constraints. As explained in the last paragraph, while
analyzing a specification for a safety property, even if it violates an invariant property, or shows
cyclic dependency – even in a very limited area of its reachable state space - it will be rejected.
For such specifications, instead of rejecting the specification outright, the synthesis tool should
guide the user by showing the exact range of the input values (or equational relationships
between the inputs as appropriate) by directing the resulting program to areas of the state space in
violation. This is exactly the problem addressed in this section. To make decisions with range
constraints, Polyhedral libraries are used as they can take affine relations as constraints. The
example below will illustrate the problem being addressed by the work of this section. Consider
the example shown in Listing 4.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
46

Listing 4: Causal Loop Example
process AC_ DISPLAY = (? integer minT , curT , maxT ;
! integer disp _coldT , disp _hotT , disp _ normT)
(| minT ^= curT ^= maxT
| disp _ coldT := minT when curT <70 default curT
| disp _ normT := (disp _ coldT +5) when curT =70 default
(disp _hotT -5)
| disp _ hotT := (disp _ normT +5) when curT >80 default maxT
|);

A Boolean abstraction based check would replace each predicate by a Boolean variable taking
arbitrary values, and will not consider the relationship between the predicates in their numerical
domain. As a result, a causal dependency loop will be detected by such analysis because of the
interdependency between disp_normT and Tdisp_hot . However, if the abstraction is cognizant of
a theory of integers with ordering relations, then it would lower the Boolean abstraction to a
model that considers intervals with ordering. On this model, one could prove that when curT>80,
only then would such a causal dependency loop exist. Obviously, if this happens, the system will
behave non-deterministically or will deadlock. If this information is explicitly presented to the
user upon completion of the analysis, and the user can guarantee an additional input constraint,
70≤curT≤80, then generating code from this specification is completely legitimate, since the
program will not display any deadlock behavior. In addition, if one wants to ensure safety, one
could produce a wrapper that would intercept all inputs curT and check against this constraint,
and filter out any occurrence of input values that violate the user guaranteed constraints.
However, if the user can guarantee only 70≤curT≤90 the system will exhibit causal behavior
when 80<curT≤90. But the system has a safe operating area, 70≤curT≤80. One could still apply a
wrapper to prevent the system from moving outside its safe operating area, if it makes sense for
the application.

This research proposes a polyhedral model based causality analysis technique which can accept
Boolean, integer and rational input constraints and checks for violation of safety properties (e.g.,
existence of causal loops) in the constrained system. Based on polyhedral analysis of the
constraints and specifications, a technique to identify the safe operating area of the system in
terms of the bounds on the input and other linear constraints is also proposed. In the case of
multiple safe operating areas, this technique lists all of them. Additionally, a safe code synthesis
technique is proposed by adding wrappers to ensure that the resulting system does not behave
non-deterministically or deadlock even when the input constraints are accidentally violated.

The proposed solution is illustrated with the example below. Consider the signal program shown
in Listing 5, which is an extension of the program shown in Listing 4.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
47

Listing 5: True Causal Loop
process AC_ DISPLAY = (? integer minT , curT , maxT , curP , curK
! integer disp _coldT , disp _hotT , disp _ normalT)
(| minT ^= curT ^= maxT ^= curP ^= curK
% Conditions %
| cond _1 := ((curT >= 2) and (curT <= 18))
| cond _2 := ((curP >= 3) and (curP <= 21))
| cond _3 := ((curK >= 25) and (curK <= 35))
| cond _4 := (curT - curP >= -10)
| cond _5 := ((curT + curP >= 11) and (curT + curP <= 33))
% Output Computation %
| disp _ coldT := minT when (curT < minT) default curT
| disp _ normalT := (disp _ coldT +10) when
(not(cond _1 and cond _2 and cond _3))
default (disp _hotT -10)
| disp _ hotT := (disp _ normalT +10) when (cond _4 and cond _5)
default maxT
|)
where
boolean cond _1, cond _2, cond _3, cond _4, cond _5;
end;

When a Boolean abstraction is analyzed, it identifies the possibility of a causal loop because of
the interdependency between disp_hotT and Tdisp_normal as shown in Listing 6.

Listing 6: Possible Causal Loop
(| { disp _ hotT --> disp _ normalT } when C_ CLK _31
| { disp _ normalT --> disp _ hotT } when C_CLK _23
|)
where , C_ CLK _31 = cond _4 and cond _5
C_CLK _23 = cond _1 and cond _2 and cond _3

One can invoke an SMT solver to check for nullity of clock constraints (C_CLK_31∧C_CLK_23)
on the path of the apparent loop. This is done by extracting the clock constraints and generating
the predicates for the Yices SMT solver as shown in Listing 7.

Listing 7: Assertion in SMT solver and Solution
(define curT :: int) (define curP :: int) (define curK :: int)
(assert (and (<= curT 18) (<= curP 21) (<= curK 35)
(>= curT 2) (>= curP 3) (>= curK 25) (<= (+ curT curP) 33)
(>= (- curT curP) -10) (>= (+ curT curP) 11)))
(check)

Result : SAT , Counter example : curT =8, curP =3, curK =25 %

Invoking the Yices solver will decide this condition as satisfiable (which indicates the existence
of true causal loops) and it outputs one counter example to show a case where a causal loop may

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
48

create a deadlock. If input constraints are included, an SMT solver will not be able to provide the
safe operating region of the input space.

4.2.2.6.1 Constraint Extraction and Transformation for Polyhedral analysis
Given the input constraints shown in column 1 of Figure 12 for the SIGNAL program shown in
Listing 4, the clock constraints for a possible causal loop are transformed to a system of affine
inequalities and equations and are shown in column 2 of Figure 12. There exists an implicit
logical intersection among all the constraints within each column of Figure 12. The constraints in
Figure 12 need to be transformed into affine form to use the PolyLib library [51]. The system of
translated affine inequalities is shown in Figure 13. This system is further abstracted to matrices
before using Polylib APIs.

Figure 12: Input and True Causual Loop Constraints

Figure 13: Inequalities and Equations from Input and Loop Constraints

Figure 14 shows the plot of polyhedra representing both input constraint and true causal loop
constraints. From the multiple views we see that there exists a region of intersection between the
two polyhedra, which indicates the existence of true causal loops with the current input
constraints.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
49

Figure 14: (Top) 3D-plot (multiple views) of Polyhedra representing Input and Loop Constraints. (Bottom) 3D

plots of I ∩ L and I - L

4.2.2.6.2 Polyhedral Analysis
To obtain the bounds of the safe operating region and the region where the true causal loop
exists, one applies two polyhedral operations from the PolyLib library.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
50

i DomainIntersection(I,L): This operation returns the intersection of two polyhedral
domains. This is used to compute I∩L.

ii DomainDifference(I,L): This operation returns a new polyhedral domain which is the

difference, I−L.

Both of these operations may return many sub-polyhedra instead of one single resultant
polyhedron. The union of all of the sub-polyhedra will yield the resultant polyhedron. Figure 14
also shows the plots for both I∩L and I−L respectively. Note that the plot of I−L actually is the
union of six different polyhedra.

4.2.2.6.3 Limitation of Polyhedral libraries
Almost all of the existing polyhedral libraries including the one used here, PolyLib, have
restrictions in that they can only accept integer constraints. In the proposed technique, all rational
constraints are multiplied by the least common multiple to obtain integers, and any floating point
numbers are truncated based on the precision specified by the user. The truncated floating point
constraint is then multiplied by a suitable number such that it becomes an integer.

4.2.2.6.4 Safe code synthesis using Wrapper
From the result of polyhedral analysis, the bounds on inputs for the safe operating region are
obtained and must be checked before actually passing them to the process, so that the process
remains in safe trajectories. Wrapper code is inserted which prevents any inputs violating the
conditions of safety from being passed forward. The user of the synthesis tool is given the option
to choose if such implementation makes sense in the application domain. Listing 8 shows the
wrapped code for the SIGNAL program shown in Listing 4.

Listing 8: Signal program of Listing 7 with wrappers
process AC_ DISPLAY = (? integer minT , curT , maxT ;
! integer disp _coldT , disp _hotT , disp _ normT)
(| minT ^= curT ^= maxT ^= cond _1
| cond _1 := ((curT >= 70) and (curT <= 80))
| disp _ coldT := (minT when curT <70 default curT) when cond _1
default DEFAULT _ VALUE
| disp _ normT := ((disp _ coldT +5) when curT =70 default
(disp _hotT -5)) when cond _1
default DEFAULT _ VALUE
| disp _ hotT := ((disp _ normT +5) when curT >80 default maxT)
when cond _1 default DEFAULT _ VALUE
|)
where
bool cond _1;
end;

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
51

4.3 Tool development work
Developing large case studies using EmCodeSyn is difficult because of current GUI limitations of
the EmCodeSyn tool. Below are some of the changes that have been implemented to mitigate this
problem.

4.3.1 EmCodeSyn improvement
Current status: The actor shapes have been changed, so that now each actor has a different shape.
The earlier zoom feature used to zoom in/out of the entire canvas, but changes have now been
implemented to the GUI such that each actor can be individually zoomed in or out. There was a
problem with the canvas and scroll bars for large MRICDF models which has now been fixed
allowing the scrollbar to adapt dynamically. Originally all the lines were 1-D lines and because of
this the models were not presentable as the lines were allowed to pass over another actor causing
a messy display. An automated graph layout mechanism has been implemented which performs
orthogonal layout of MRICDF models based on the Open Graph Drawing Framework
(OGDF)[54]. It has been completely integrated into EmCodeSyn for orthogonal layout and a
demonstration of the clean display of crossing lines has been performed.

4.3.1.1 Simcdf: Simulink models to MRICDF import
Current Status: The Simcdf tool can generate MRICDF XML files from multi-layer Simulink
MDL files. Currently all of the blocks in MDL files are considered as function actors. On the
other hand writing C function definitions for most of Simulink blocks for code generation has
been completed. Integration of Simdcf to EmCodeSyn is complete and a demonstration has been
performed. C code generation from the Simulink models can now be done in EmCodeSyn.

Further improvements: The current Simcdf tool accepts a subset of Simulink models. It is
planned to extend the Simcdf tool to also accept integrators, differentiators, and other timing
sensitive blocks.

4.3.1.2 Sigcdf: SIGNAL to MRICDF import
Future work: SIGNAL examples can be leveraged not only in the distribution but to build
MRICDF models from them. This is useful in two ways. First is for verification of the
EmCodeSyn compiler implementation and second is to compare the quality of code generated by
Polychrony as compared to EmCodeSyn. Apart from these is the added advantage of ready-made
MRICDF models, although this will require the ability to parse the entire SIGNAL grammar.

4.3.2 CTS Tool
Section 4.1.3 describes the C to SIGNAL conversion tool.

4.4 Implementation of Behavioral type interference algorithm
Section 4.1.2 describes the behavioral type extraction algorithm.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
52

4.5 Development of Prime Implicate extraction algorithms

4.5.1 Introduction
The terminology used here for logical formulas is standard: An atom is a propositional variable, a
literal is an atom or the negation of an atom, and a clause is a disjunction of literals. An implicate
of a logical formula is a clause entailed by the formula. Thus a clause C is an implicate of a
logical formula F if C is satisfied by every interpretation that satisfies F. An implicate is a prime
implicate, if it is not a tautology and if no proper subset is an implicate. Prime implicates are
useful in the analysis of Boolean formulas (logical formulas) derived from polychronous
(MRICDF) specifications, and the primary goal of the State University of New York at Albany
team is the development of effective techniques and systems for computing the prime implicates
of those systems.

Techniques that scale are crucial because real systems will generate large formulas, and the
general problem of finding all prime implicates of a logical formula is NP-hard. The project has
produced advances that enabled significant speedups, even for the general prime implicate
problem, and especially for Boolean theories arising from MRICDF specifications.

4.5.2 Computational Advances

4.5.2.1 Leaving the Original Algorithm
In [34], a branch-by-branch analysis leads to the algorithm introduced there. In [35], a set
oriented characterization is not only more intuitive but leads to a more efficient version of the
algorithm. The added efficiency stems from three improvements.

• First, many subsumption checks required by the original algorithm are revealed by the set
oriented analysis to be unnecessary and are avoided in the improved algorithm.

• A second improvement results from avoiding tries in which branches have distinguishing

marks, necessarily stored at the ends. Checking the marks entails traversing the branch and
is almost as expensive as a subsumption check. Instead, identically typed branches are kept
in single tries.

• Realizing clause-based operations recursively on entire sets, represented as tries, provides a

third improvement. Experiments indicate that the trie-based operations outperform branch-
by-branch operations, and that the advantage increases with the size of the trie.

The difference in performance of the newer algorithm over the original is quite dramatic:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
53

Figure 15: Old vs New pi-trie algorithm

Figure 15 compares (in log scale) the pi-trie algorithm from [34] to the updated version in [35],
using the recursive, trie-based and operators. The input for both algorithms is a 15-variable 3-
CNF with varying numbers of clauses and the runtimes averaged over 20 trials.

4.5.2.2 Filters and Search Space Reduction

Figure 16: pi-trie Filtering

In synthesis of polychronus systems, prime implicates that are positive, containing only positive
literals, and short, especially unit prime implicates, are of special interest. Such prime implicates
can always be selected from the entire set of prime implicates, but generating only the prime
implicates of interest is not only preferable, but much more efficient [35, 36]. Figure 16 has the
results of an experiment with a 13-variable 3-CNF formula. Two filters are used: the first is “max
length 2,” and the second excludes clauses containing any of the literals v3, v5, v6, or ¬v7. The
algorithm’s singular design removes clauses not satisfying the specified filter from the
computation itself, not just from the results, thus reducing the entire search space.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
54

4.5.2.3 Decomposition
The goal of decomposition is to reduce a single computation on a formula to be independent
computations on subformulas. For prime implicates, as well as for many other problems, this can
only be accomplished if the subformulas are variable-disjoint.

The pi-trie algorithm creates conjoined subformulas via variable substitution. Decomposition
analysis can enable a choice of variable orderings for the algorithm, so that conjoined variable
disjoint subformulas (of roughly equal size) result.

The system developed here is equipped with a preprocessing component that selects a variable
ordering for the algorithm that induces a favorable decomposition. Variable disjoint subformulas
are detected and analyzed independently, thus reducing the computational load of the system.

Each of the seven examples listed in Figure 17 was run in eight different trials. In the first four
trials, the variables were reordered in a way that favors decomposition, while no reordering was
done in trials 5-8. Within these groups of four, the pi-trie algorithm was set up with the following
option choices.

1. A plain vanilla pi-trie algorithm set to build the entire pi-trie.

2. A pi-trie algorithm filtered for positive prime implicates only.

3. A plain vanilla pi-trie algorithm to build the entire pi-trie, but recognize variable-disjoint
subformulas.

4. A pi-trie algorithm filtered for positive prime implicates only, and recognizing variable-
disjoint subformulas.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
55

Problem ReOrd ReOrd # Orig # Actual # Orig # Actual Avg_Time Constructor
 Vars Time Vars Vars Clauses Clauses In Msecs Options

BlackBoard_1.sat yes 37 118 54 243 112 timeout none
BlackBoard_1.sat yes 37 118 54 243 112 4788.0 (pos only)
BlackBoard_1.sat yes 37 118 54 243 112 timeout (decomp.)
BlackBoard_1.sat yes 37 118 54 243 112 854.0 (pos only)(decomp.)
BlackBoard_1.sat no 0 118 54 243 112 timeout none
BlackBoard_1.sat no 0 118 54 243 112 2633.0 (pos only)
BlackBoard_1.sat no 0 118 54 243 112 timeout (decomp.)
BlackBoard_1.sat no 0 118 54 243 112 1188.0 (pos only)(decomp.)

FWS_1.sat yes 3 48 17 97 31 66.0 none
FWS_1.sat yes 3 48 17 97 31 17.0 (pos only)
FWS_1.sat yes 3 48 17 97 31 57.0 (decomp.)
FWS_1.sat yes 3 48 17 97 31 11.0 (pos only)(decomp.)
FWS_1.sat no 0 48 17 97 31 71.0 none
FWS_1.sat no 0 48 17 97 31 18.0 (pos only)
FWS_1.sat no 0 48 17 97 31 153.0 (decomp.)
FWS_1.sat no 0 48 17 97 31 35.0 (pos only)(decomp.)
GCD_1.sat yes 5 55 20 125 47 37.0 none
GCD_1.sat yes 5 55 20 125 47 10.0 (pos only)
GCD_1.sat yes 5 55 20 125 47 28.0 (decomp.)
GCD_1.sat yes 5 55 20 125 47 7.0 (pos only)(decomp.)
GCD_1.sat no 0 55 20 125 47 46.0 none
GCD_1.sat no 0 55 20 125 47 23.0 (pos only)
GCD_1.sat no 0 55 20 125 47 56.0 (decomp.)
GCD_1.sat no 0 55 20 125 47 24.0 (pos only)(decomp.)

pEHBH_1.sat yes 3 48 14 110 30 34.0 none
pEHBH_1.sat yes 3 48 14 110 30 12.0 (pos only)
pEHBH_1.sat yes 3 48 14 110 30 23.0 (decomp.)
pEHBH_1.sat yes 3 48 14 110 30 5.0 (pos only)(decomp.)
pEHBH_1.sat no 0 48 14 110 30 23.0 none
pEHBH_1.sat no 0 48 14 110 30 5.0 (pos only)
pEHBH_1.sat no 0 48 14 110 30 20.0 (decomp.)
pEHBH_1.sat no 0 48 14 110 30 5.0 (pos only)(decomp.)

prod_con_prim_1.s yes 8 76 39 163 81 12715.0 none
prod_con_prim_1.s yes 8 76 39 163 81 1440.0 (pos only)
prod_con_prim_1.s yes 8 76 39 163 81 10386.0 (decomp.)
prod_con_prim_1.s yes 8 76 39 163 81 95.0 (pos only)(decomp.)
prod_con_prim_1.s no 0 76 39 163 81 7059.0 none
prod_con_prim_1.s no 0 76 39 163 81 1006.0 (pos only)
prod_con_prim_1.s no 0 76 39 163 81 6982.0 (decomp.)
prod_con_prim_1.s no 0 76 39 163 81 633.0 (pos only)(decomp.)
resetcounter_1.sat yes 2 26 13 51 24 13.0 none
resetcounter_1.sat yes 2 26 13 51 24 3.0 (pos only)
resetcounter_1.sat yes 2 26 13 51 24 12.0 (decomp.)
resetcounter_1.sat yes 2 26 13 51 24 2.0 (pos only)(decomp.)
resetcounter_1.sat no 0 26 13 51 24 14.0 none
resetcounter_1.sat no 0 26 13 51 24 3.0 (pos only)
resetcounter_1.sat no 0 26 13 51 24 19.0 (decomp.)
resetcounter_1.sat no 0 26 13 51 24 6.0 (pos only)(decomp.)

watchdog_1.sat yes 5 59 28 119 55 726.0 none
watchdog_1.sat yes 5 59 28 119 55 181.0 (pos only)
watchdog_1.sat yes 5 59 28 119 55 474.0 (decomp.)
watchdog_1.sat yes 5 59 28 119 55 51.0 (pos only)(decomp.)
watchdog_1.sat no 0 59 28 119 55 808.0 none
watchdog_1.sat no 0 59 28 119 55 147.0 (pos only)
watchdog_1.sat no 0 59 28 119 55 701.0 (decomp.)
watchdog_1.sat no 0 59 28 119 55 58.0 (pos only)(decomp.)

Figure 17: Results of 5 technique combinations for solving the Blackboard problem

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
56

Figure 18: The Blackboard Problem

The Blackboard problem is the largest and most difficult of the example problems. Figure 18
shows more recent runs on the Blackboard problem without timeout limits and using a
progression of five technique combinations. Figure 17 shows the “timeout” on all four options
not filtering for positive prime implicates.

The first technique, discovery of equivalent variables, is applied in all cases of Figure 17. A
preprocessor searches the given formula for simple variable equivalences and then collapses the
equivalence classes into singletons.

The next technique applied is filtering. This alone increases efficiency by more than an order of
magnitude. This is followed by ordering. By itself, ordering does not help at all, but a significant
speedup results from the synergistic combination of ordering and decomposition.

In summary, on the Blackboard problem, the raw pi-trie algorithm requires about 1.6 minutes
with discovery of equivalent variables. But with filtering, reordering, and decomposition, the
positive prime implicates are obtained in about 0.3 seconds.

4.5.2.4 Dynamic Programming
The main routine of the pi-trie algorithm searches recursively through the space of assignments
by incrementally substituting truth constants for variables in the formula. This may result in
independent subproblems (as discussed in the previous section). But in addition, identical
subproblems may arise along different paths in the recursion. For example, let F = {{a, b, c, ¬d},
{c, ¬d, e, f}}. Then each of the following substitutions for c, d, e and f yield the formula {{a,
b}}:

c D e f
0 1 0 1
0 1 1 0
0 1 1 1

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
57

When c=0 and d=1, the resulting clauses {{a, b}, {e, f}} are variable-disjoint, and thus any
assignment satisfying the clause {e, f} simply removes it from the formula without affecting the
rest. Repeated subproblems produced by such variable-disjointness are recognizable and
strategies can be developed via dynamic programming to prevent repeated work. A version of the
pi-trie system that employs this capability has been developed. While there is considerable
overhead, significant speedups are likely to occur when the problems get quite large and have
small treewidth. However, large MRICDF systems appear to induce (large) Boolean theories with
small treewidth and may therefore be more amenable to this technique.

4.5.2.5 Graph-Based Analysis of MRICDF Theories
The actors of an MRICDF system yield clauses of the corresponding Boolean theory as follows:

The epochs of a function or of a buffer are identical; each pair a, b yields the clauses – {𝑎, 𝑏},
{𝑏,𝑎}. The union of the epochs of a priority merge yield the following clauses – {𝑖1, 𝑖2, 𝑜},
{𝑖1, 𝑜}, {𝑖2, 𝑜}. The epochs of a sampler lead to union and intersection clauses – {𝑐, [𝑐], [¬𝑐]},
{𝑖, [𝑐], 𝑜}, {[𝑐], [¬𝑐]}, {[𝑐], 𝑐}, {[¬𝑐], 𝑐}.

Variables that are equivalent, representing signals with the same epoch, can be treated as
identical, substantially reducing the size of the formula.

Typically two-clauses contain one positive and one negative literal and arise from epoch subsets.
The subset relation partially orders I, the system epoch, i.e., the set of all instants. This partial
order enables representation of I as a dag (directed acyclic graph) D. The union of the maximal
elements of D is all of I, and thus the set M of maximal elements represent a positive implicate,
though not necessarily a prime implicate. However, any minimal subset of M whose union is the
system epoch is a prime implicate. These prime implicates are especially useful for this project.

There are well known fast (i.e., polynomial) algorithms that find the set of maximal elements of a
dag. A fast algorithm that removes unnecessary maximal elements, tentatively called the union
algorithm, has been developed, and a prototype system that implements the union algorithm is
under development. The prototype was able to find a prime implicate subset of M for each of the
seven examples in Figure 17.

However, the union algorithm does not always produce a prime implicate subset of the set of
maximal elements. Counterexamples have been discovered, but all seem to be rather unusual
cases such as MRICDF systems.

Even though the output is not guaranteed to be a prime implicate, it is expected to be useful, both
in its own right and as a filter for the pi-trie system. Focusing on this specialized version of the
prime implicate problem may enable analysis of systems far too large to be handled by even the
most advanced prime implicate algorithms.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
58

4.6 Case Study
Purpose: Currently, the extraction tool, CTS, is not ready to automatically generate code for full-
scale systems. In order to provide some preliminary results this research has manually converted
two large-scale control systems from C to SIGNAL. The objectives of this study are two-fold.
First, by converting the systems to SIGNAL, it is possible to illustrate the capabilities of
SIGNAL to detect behavioral conflicts that would otherwise go undetected by a C compiler.
Second, the converted systems will be able to serve as a baseline for future automatic translation
attempts to be compared against.

4.6.1 Case Study Examples

4.6.1.1 ArduPilot System Description
Ardupilot is an open source hardware and software platform that was developed as a part of the
Arduino open-source electronics prototyping platform. The Ardupilot system consists of the
hardware which is placed on an Unmanned Aerial Vehicle (UAV) and a radio controller that is
held by the user to control the UAV. The basic components of the hardware inside the UAV are
the following:

• RC receiver

• Global Positioning System (GPS) receiver

• Servo Motors - for controlling the direction of the UAV

• Various sensors including position and pressure

• Ardupilot Board - board containing the controller of the UAV

The radio controller in the hand of the user is used to communicate the roll, pitch and the throttle
information to the UAV. The firmware for the system is written in the Arduino language, which
is an extension of Embedded C.

The following is a description of the modes in which the Ardupilot works.

• Mode1: Manual Flight – The UAV is controlled completely using the radio controller.

• Mode2: Stabilize – The radio controller is used to control the UAV. However, if the user
does not use the radio controller, the UAV will automatically stabilize.

• Mode3: Fly-by-wire-A – The UAV will automatically go to the programmed point
controlling the altitude and speed.

• Mode4: Fly-by-wire-B – The UAV will automatically go to the programmed point
controlling the altitude. The airspeed is controlled manually in this mode.

• RTL: Return to launch mode in which UAV will return to the programmed launch point
and will circle until manual control is established. The UAV can be nudged in this mode.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
59

• Loiter: The aircraft will circle around the current position. The UAV can be nudged in this
mode.

4.6.1.2 Ardupilot Software
The Ardupilot case study analyses the software running on the microcontroller of the Ardupilot
system. It tries to explain the cases where there could be problems if the system were
implemented in C and whether these issues would be detected earlier if SIGNAL were to be used
to develop the software of this embedded system. There are various modules implemented in the
Ardupilot software. A brief description of the modules is provided in Figure 19.

Module Description
Name of Module Major Functions of the Module
Waypoint Responsible for reading different waypoints

from EEPROM and updating waypoint
information

Timing Contains timer functions
System Configures the pin modes , reading and

writing values from EEPROM, setting the
mode of the Ardupilot by changing mux
setting and failsafe operation

Servo Setting servo muxes to switch between auto
and manual mode, adjusting servo positions

Sensors Reads values from analog inputs to
determine the value of roll, pitch and speed

Radio Initializes the radio and reads radio value
Print Prints various variables out through the

serial port
Navigation Calculates the roll and pitch of the ardupilot

that have to be set to navigate to the set
destination waypoint

GPS GPS related functions
Events Switches mode based on various events that

happen in the system
Control Navigation Navigation helper functions
Control Attitude Sets the integrator values to maintain the

desired pitch and roll calculated by control
navigation module

Attitude Sets the position of the servo based on the
calculated pitch and roll

Ardupilot The main module

Figure 19: Ardupilot software – module descriptions

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
60

The main module of the Ardupilot software, apart from variable initialization and initial
configuration set-up, consists of an infinite loop (while(true){…}) that is responsible for running
the Ardupilot. This infinite loop can be compared to a process in SIGNAL. Figure 20 provides
the list of major function calls in this main while loop and a description of the function.

Functions in the Main Loop
Function Name Description
read_control_switch Read 3-position switch on radio
read_radio Filters radio input
throttle_failsafe Checks for throttle failsafe

condition
read_XY_analogs Read IR sensors values
decode_gps Read in the GPS position
reset_location Reset waypoint to the starting point
read_analogs Read analog inputs
stabilize Function that helps in stabilizing

the UAV
navigate Navigation control loop that helps

in navigating from one waypoint to
another

update_throttle Updates the throttle value

 Figure 20: Ardupilot software – functions in main loop

4.6.1.3 Case study examples on Ardupilot
Why was Ardupilot chosen for the Case Study?
Ardupilot is a real-time embedded system where safety of the system is critical. Even a small
deviation from an expected behavior can result in a large amount of deviation in the UAV’s
expected path and can even lead to loss of the UAV. The software on the Ardupilot consists of
various modules that are integrated together. This provides an opportunity to check if there can
be errors in the software because the behavior of the module is not captured.

Ardupilot: Case1 -

Figure 21: Case 1 Block Diagram

Figure 21 represents a sub-process (P2) being called by a main process (P1). This case shows that
even if the sub-process functionality is implemented correctly, it produces non-deterministic

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
61

output when integrated into the main process. This is because the main process expects the clock
of x and z to remain the same, i.e. for every input x there has to be an output z generated. The
sub-process however takes an input only after it produces the output and this behavioral property
of the sub-process makes it incompatible for integration with the main process.

Figure 22: Case 1 – Ardupilot Block Diagram

In the case of Ardupilot, the main loop consists of read_radio function that reads a channel value
from the radio that corresponds to the throttle, and the throttle_failsafe function that checks if the
value read is within acceptable limits, as shown in Figure 22. The SIGNAL program, as shown in
Listing 9, shows a throttle function where the output clock does not match the input clock. This
occurs because the throttle function takes four iterations to compute the output. This means that if
this behavior is not taken into consideration while designing the system, it will result in an
undesired output.

Listing 9: SIGNAL program of throttle function
process case1 =(? dreal radio_ch3;! boolean throttle_failure;)
(| radio_ch3 ^= throttle_failure
%radio input processing %
| radio_out := 0.9 * radio_ch3

% throttle failsafe function %
| throttle_failure := (throttle (radio_out) > 100.0)
|)
where
dreal radio_out;

process throttle =
(? dreal in1;
! dreal out1;
)
(| cnt := 4 when (cntz = 0) default (cntz - 1)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
62

| cntz := cnt $ init 0
| inbuf := in1 when (cnt = 4) default inbufz
| inbufz := inbuf $init 0
| calc := (inbuf + calcz) when (cnt > 0) default 0.0
| calcz := calc $ init 0
| out1 := calcz when (cnt = 0)
| in1 ^= when (cntz = 0)
| calc ^= inbuf ^= cnt
|)
where
integer cnt, cntz;
dreal inbuf, inbufz, calc, calcz;
end;

end

The SIGNAL code of Listing 9 models this scenario. The clock calculus of SIGNAL is able
to identify the problem and indicates that there is a clock constraint. The clock constraint
implies that this system is behaviorally incompatible. Thus, the block ‘throttle’ has to be
redefined to be behaviorally compatible with the system. However, the same system
implemented in C will result in non-deterministic output.

Ardupilot: Case2 -

Figure 23: Case 2 Block Diagram

In the Figure 23 there are two processes. Process 1 takes an input and generates the sum from 1 to
the value of the input. Process 2 takes an input and multiples the value by 4. Both of these
processes could represent two separate components developed independently. They will function
correctly when they are tested. However, integration of both of the processes shown in Listing 10
will result in an error.

Listing 10:
process update_throttle = (? integer ch3; ! integer throttle)
(| throttle := sum (ch3) + multiply (ch3)
|)
Where

process sum = (? integer in1; ! integer out1;)
(| j ^= cnt

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
63

 | in1 ^= when (cntz = 0)
 | cntz := cnt $ init 0
 | cnt := in1 when (cntz = 0) default (cntz-1)
 | jz := j $ init 0
 | j := (jz + cnt) when (cnt > 0) default 0
 | out1 := jz when (cnt = 0)
 |)
where
integer cnt, cntz, j, jz;
end;

process multiply =
(? integer in1;
 ! integer out1;
)
(| cnt := 4 when (cntz = 0) default (cntz - 1)
 | cntz := cnt $ init 0
 | inbuf := in1 when (cnt = 4) default inbufz
 | inbufz := inbuf $init 0
 | calc := (inbuf + calcz) when (cnt > 0) default 0
 | calcz := calc $ init 0
 | out1 := calcz when (cnt = 0)
 | in1 ^= when (cntz = 0)
 | calc ^= inbuf ^= cnt
|)
where
integer cnt, cntz;
integer inbuf, inbufz, calc, calcz;
end;

end

The SIGNAL code in Listing 10 was able to identify that the two components are incompatible
because it was able to extract the root clock for the ‘update_throttle’ process. The addition
operator requires both the operands to have the same clock. However, the two processes have
different clocks and hence the system cannot have a root clock generated.

4.6.2 EmCodeSyn as a Code Generation Tool for an UAV

4.6.2.1 Introduction
Ardupilot is an open source hardware and software platform. The hardware board used consists
of an ATmega2560, a 16-bit micro-controller. The board is fully programmable and with the help
of a GPS module and Inertial Measurement Unit (IMU) sensors it can be used to develop an
Unmanned Aerial Vehicle. Software for the Ardupilot can be programmed using the Arduino
Programming language. The language is similar to C and includes constructs that can be used in
the programming of the micro-controller. The software can be written to make the UAV work in
various modes that can include Autopilot, Manual, and Circling. The code generation tool is
aimed at generating code for various functions of the UAV using EmCodeSyn. EmCodeSyn is a

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
64

framework of code synthesis from a multi-rate data flow based specification. It is a synchronous
programming tool based on the Multi-rate Instantaneous Channel Connected Data Flow
formalism.

4.6.2.2 Hardware Components
The hardware components of the UAV are the following:

1. The Ardupilot Mega Micro-controller Board

2. The IMU Sensor Board

3. The Radio Control Transmitter and Receiver

4. The GPS Module

4.6.2.2.1 ArdupilotMega (APM) Micro-controller Board
The micro-controller board is the component that contains the ATmega2560 micro-controller.
The software written is programmed into the Atmega2560. The micro-controller runs at 16 MHz
and has 12 timers, 256KB Flash, 4KB EEPROM and 8 KB RAM. It also has 16 10-bit ADC
channels, four 8-bit PWM channels and four programmable serial Universal Synchronous-
Asynchronous Receiver/Transmitter’s (USART). The picture of the board is shown in Figure 24.
This board also has eight input and eight output ports that can be used to receive and transmit
Pulse Width Modulated (PWM) signals. The Global Positioning System (GPS) port on the board
can be used to interface with the GPS module.

Figure 24: ArdupilotMega Micro-controller Board

4.6.2.2.2 IMU Sensor Board
This sensor board has various sensors that are used to measure different parameters of the UAV.
The data of the sensors in this board is used to access the speed and orientation of the UAV and
hence can be used to fly the UAV in autopilot mode. The main sensors on the board are a 3-axis
accelerometer and a 3-axis gyroscope that output data with the help of a 12-bit analog-to-digital
converter (ADC). The accelerometer measures the inertial forces that are exerted on the UAV.
The gyroscope measures the rotation of the object attached to it in the X, Y, and Z co-ordinates.
Both the data from the accelerometer and gyroscope are used in estimating the orientation of
UAV in space. The board also has pressure sensors that measure the altitude of the UAV.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
65

A mini Universal Serial Bus (USB) port on the board can be used to interface the board with a
computer. This port is used in programming the APM board and is also used in sending data to a
computer during testing and for log collection. This board has ports that are used for connecting
it with the APM micro-controller board. The sensor data during flight is sent via these ports to the
micro-controller. The picture of the sensor board can be found in Figure 25.

Figure 25: IMU Sensor Board

4.6.2.2.3 Radio Control Transmitter and Receiver
The Radio Control (RC) Transmitter and Receiver enable communication with the ground station
and the UAV. A nine Channel Turnigy transmitter and receiver are used. The transmitter has two
control sticks with each stick capable of moving in two directions. These four directions can be
programmed to transmit data about the throttle, yaw, pitch, and roll that the user wants the UAV
to have from the ground station. Each of the four parameters sends PWM signals in separate
channels. Figure 26 shows the transmitter and the four parameters that can be communicated
using the control sticks.

Figure 26: RC Transmitter Schematic

Two switches on the transmitter are used to communicate the flight mode information. One of the
switches is a 3-way switch and the other one a 2-way switch. Hence, up to six modes can be
programmed for the UAV flight. The pulse widths emitted by each of the switch positions has to
be programmed in the transmitter. One of the channels of the transmitter is chosen (Channel 5)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
66

and each position of the switch is programmed to output a specific PWM. The six PWM’s
programmed are 1165, 1295, 1425, 1555 and 1815. Figure 27 shows the picture of the
transmitter.

Figure 27: RC Transmitter

The RC receiver has to be coupled with the transmitter first. It is placed inside the UAV along
with the APM board. The receiver has nine channels that are directly coupled with the
transmitter. Each of these channels will give a PWM signal as its output. These channels are
connected with the input channels on the APM board. The RC receiver is powered by a 5 V
battery. The APM board receives its power from the RC receiver, shown in Figure 28.

Figure 28: RC Receiver

4.6.2.3 Work Progress
All of the hardware required for the UAV has been set-up and the functioning of the APM board
has been verified using Hardware-in-the-loop simulation. The software structure of the Ardupilot
has been covered in the previous section. Work on Code generation is ongoing. The aim of the
Code generation tool is to write all the important functions of Ardupilot in EmCodeSyn and to be
able to implement various modes on the UAV.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
67

4.6.3 AutoSAR

4.6.3.1 System Description
AUTOSAR, the automotive open system architecture, is a layered software architecture
developed jointly within the automotive industry to create an open standardized interface for
automotive hardware. The architecture is designed to interface with electronic control units,
ECUs, that employ real-time operating systems and interact strongly with hardware. Specifically,
it interacts with systems built around 16 or 32-bit microprocessors that can communicate on the
controller area network (CAN), local interconnect network (LIN), or FlexRay protocols.
Additionally, it is designed to be extensible so drivers can be added for future devices.

As previously mentioned, AUTOSAR is a layered system. The lowest layer is the microcontroller
abstraction layer, which contains internal drivers for accessing internal peripherals and memory
mapped devices of the microcontroller. Above this is the engine control unit (ECU) abstraction
layer, which interfaces with the underlying layer while also providing drivers for external
peripherals connected to the microcontroller. The top layer is the services layer. This layer
provides operating system functionality, network and memory services, and manages the ECU
state.

4.6.3.2 Arctic Core Software
Arctic Core is an open-source implementation of the AUTOSAR standard. For the purpose of
this example, the microcontroller layer is focused on, since it is the most fundamental layer and
runs closely atop the hardware. A brief description of the core modules of this layer is provided
in the table below.

AutoSAR Microcontroller Modules

Name of Module Major Functions of the Module
CPU This module is responsible for providing communication protocols to

read and set the myriad on-chip peripherals
MCU Initializes or De-initializes the microcontroller
OS Contains the methods for the running operating system to interact with

the controller
EVENT Provides system with external event handling capabilities
COUNTER Tracks internal time for synchronizations and alarms
MEMORY Interfaces with on-chip memory
TASK Provides methods for manipulating and interacting with running tasks
PCB Implements the Process Control Block
SWAP Allows for OS context swapping
ARCH Responsible for maintaining and tracking the system stack
ALARM Implements timed alarms for the system
COM-INTERNAL Implementation of internal communication protocols

 Figure 29: AutoSAR Microcontroller Modules

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
68

All the source C files for a PowerPC microcontroller kernel and supplemental driver libraries
from the Arctic Core project were manually translated to the SIGNAL language. First, the
required new type definitions from these modules were identified and consolidated in a SIGNAL
module (modules in SIGNAL are roughly equivalent to a C library). Then, each module was
translated into a corresponding SIGNAL module while preserving their original behavior. Lower
level functions were sometimes problematic because SIGNAL does not have a notion of pointers.
To overcome this obstacle, some functions utilize SIGNAL’s ability to embed C source code.
The depth of timing analysis that can be performed on such functions is limited because the
embedded C code is treated as a black box by the SIGNAL compiler. However, the timing of the
process call and the interface variables for these functions still contribute to the overall system
model. Finally, the individual modules were composed into a single top-level module,
representing the entire system.

4.6.3.3 Arctic Core Example
Using this translated system module an example execution was reconstructed from the original
project.

process test_driver = (? event start;)
(| btask_3()
 | etask_1()
 | etask_2()
 |)
where
 use MICRO_LIB;
end;

This example provides a fairly simple, straightforward test. It takes the system, and spins-off
three parallel tasks that run indefinitely. This is not expected to cause or encounter problems on
the original system, and indeed SIGNAL detected no conflicts.

4.6.3.4 Error Detection
In the original project, the three tasks ran independently of one another, so no direct conflict is
truly possible. In this next example, however, an interaction between btask3 and etask1 has been
added to the system. This system tries to have btask3 accept as input a task’s type, tes2, and
update that type, putting the result in tes1. Likewise, etask1 attempts to take tes1, to update it, and
place the result in tes2.

process test_driver = (?event start;!boolean fin;)
(| tes1 := btask_3(tes2)
 | tes2 := etask_1(tes1)
 | etask_2()
 | fin := (tes1 > tes2)
 |)
where

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
69

 use MICRO_LIB;
 TaskType tes1, tes2;
end;

Unfortunately, this arrangement cannot function. Before either task can begin, it depends on the
other to first provide their output, so the system would deadlock at runtime. SIGNAL detects this
cyclic dependency, and outputs the following detected cycle:

Figure 30: Overview of a Cyclic Dependency

| {tes1 --> tes2} when C_fin
| {tes2 --> tes1} when C_fin

This notation says that tes1 must precede tes2 while tes2 must precede tes1. Without buffers to
store initial and generated values this is a clear conflict, and if the system were run, it would lead
to system deadlock.

4.6.4 Results of the Study
These case studies have converted two actual C-based software platforms to SIGNAL,
illustrating how SIGNAL can be used to build and represent practically sized systems.
Additionally, the case studies were able to create scenarios for these SIGNAL implementations
that either simulate flawed compositions or represent processes that cannot be safely composed.
The case studies have shown that SIGNAL is able to detect such conflicts at compile time,
reducing the probability of such an error going untested and causing a crash at run-time.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
70

5 Some Paths Unexplored – Some Blind Alleys
There are some paths that were proposed to be explored, but time ran out before they could be
completed. There were also some paths explored where progress was limited, so backtracking
occurred. This section summarizes these areas.

5.1 Affine Clock Relation based Interface Types
If the component behavior has fixed periodicity with respect to another component, e.g. one
process produces an output x, ten times for each time the other process is ready to consume that
input, these two components are not going to compose without having an overflow of data on the
channel connecting the two components. One possibility to overcome the data overflow is to
design a buffer of size 10, and when the buffer gets full, the process is stopped until the other
process catches up. This kind of buffer and synchronization logic synthesis can be automated if
the interface types capture this numeric ratio. Standard polychronous models can express this
behavior but that would require replicating the consumer process ten times, and then defining a
synchronization point between the two models, which would be inefficient. If the buffer has to
be synthesized, the ratio of the rate of input and rate of output must be expressed in the clock
relations. Such clock relations are called affine relations.

It was planned to explore the notion of affine clock relations, and the use of such relations to
check for interface compatibility, as well as to find ways to synthesize efficient buffering and
synchronization logic to make them compatible. While it is believed this direction will have
potential impact to efficient modeling, not enough progress was made in this area and it will be
completed in a different project.

5.2 Autosar Platform Modeling Issues
For case study purposes, it was planned to extract the behavioral interfaces for an open source
AUTOSAR platform model written in C++ and inject problems at the interfaces of components,
and verify that the methodology could catch the injected problems. The reason for doing this was
as follows: the tool to automatically extract the polychronous model from C programs was not
ready for use early on, although that prototype tool is now available. So in order to demonstrate
the methodology, the components were manually converted to the polychronous modeling
language SIGNAL, and checked for compatibility problems. This work was described in Section
4 of this report.

The AUTOSAR platform is a large, complex system. The platform operates at a low-level,
serving as an interface between applications and the underlying hardware. As a result, there is an
abundance of system calls and macros that do not directly translate to SIGNAL. These calls were
collected into a few supporting C library files. AUTOSAR also has several different
implementations, dependent on the hardware platform being targeted for deployment. Due to
limitations with the SIGNAL language, notably a lack of conditional definitions, the manual
translation was completed for only one target platform: the PowerPC. Currently, that is the state
of the AUTOSAR case study, as a SIGNAL-modeled PowerPC interface with supporting C

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
71

libraries. The ultimate goal of this case study is to use it as a comparison of efficacy between the
manually translated code and the code generated by our static single assignment based automated
translation tool. The translation tool, however, is still under development and has not yet reached
a point where it can translate a C program of AUTOSAR’s complexity. A comparison can be
made once the tool has been expanded to cover instances such as pointer-based memory access,
C macros, and conditional definitions.

5.3 Ardupilot Platform Modeling Issues
For case study purposes, it was proposed to extract behavioral interfaces for Ardupilot platform
models written in C++ and to inject problems at the interfaces of components, and then verify if
the proposed methodology could catch those problems. This was partially performed, as
described in Section 4 of this report. However, the entire Ardupilot platform was not fully
modeled due to various issues.

5.3.1 Interface Variable
The Ardupilot software has a large number of static variables that are being internally modified
across all of the functions. However, for a SIGNAL process to work, these static variables have
to be exposed at the interface. This makes the problem of conversion very complicated since a
process A that calls another process B inside it also needs to expose the static variables that are
being used by process B. This results in some processes having a large number of variables in
the interface. The use of modules was an approach that was tried to prevent this problem.

5.3.2 Typecasting
The Ardupilot software has various types that are not being supported by SIGNAL. This requires
typecasting of variables. For example, types like uint16_t and int8_t which are used in the
Ardupilot software to save space on the EEPROM are not supported in SIGNAL. Additionally,
pointers are not supported in SIGNAL.

5.3.3 System Calls
There are various systems calls like delay() that are not possible to generate using SIGNAL.

5.3.4 Cyclic Function Calls
There are cases of cyclic function calls in the Ardupilot software, where Function A calls
Function B and Function B calls Function A. These cases would work in C, but do not work in
SIGNAL due to its Cyclic dependency.

5.3.5 Final Implementation
The above limitations make it very difficult to convert the entire Ardupilot code to SIGNAL.
However, the main idea of the case study was to illustrate the issues like bugs and errors that
could arise out of the implementation of the embedded system in C. The case study also tried to
demonstrate how SIGNAL’s clock extraction mechanism would spot the errors. Hence, various
functions of Ardupilot software were converted and possible issues in the implementation in C

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
72

were explored. The converted SIGNAL functions were able to identify the bugs that were not
spotted during the C program analysis.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
73

6 Conclusions & Recommendations
The primary recommendation resulting from this research is that composition of pre-designed
software components without behavioral types leads to many errors including software bugs,
concurrency bugs, deadlock, etc. It is difficult to subject the composed system to formal
verification because most formal verification tools are not scalable to the degree required. Thus
it is more efficient to check the compatibility of components by composing their interface types,
and checking if the composition does not violate certain properties, such as liveness.

However, the question is: what is the best way to represent the behavior of a component’s
interface. The model needs to capture the behaviors of the signals/variables/events at the
interface without having to completely reproduce the entire design of the component. This
requires a modeling domain where model composition is not computationally explosive.

The polychronous modeling domain provides one possibility; experience from this project shows
that polychrony is able to check for many properties of composition, especially liveness.
However, there are other ways to express the behaviors at the interface, for example via an
assume/guarantee property specification. This path was not explored in this effort. While there is
reason to believe that such interfaces will be more compact, checking composition is likely to be
more expensive computationally. However, this approach allows more properties of the
composition to be guaranteed.

In summary, it is believed that there is a great need for continued research on the problem of
software component composition and guaranteed integration results. This project was just the
beginning of exploration of the space.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
74

Appendix: Dissertations and technical reports
supported by the project
The following were partially or completely supported by this project:

Bijoy A. Jose, Formal Model Driven Software Synthesis for Embedded Systems, PhD
Dissertation, August 2011.

Jens Brandt, Mike Gemuend, Klaus Schneider, Bijoy A. Jose and Sandeep K. Shukla, "Causality
Analysis of Polychronous Programs, FERMAT Technical Report 2011-02, 2011.

Julien Ouy, Jing Huang and Sandeep Shukla, "Behavioral Compatibility Checking of
Polychronous Components", FERMAT Technical Report 2011-03, 2011.

Bijoy A. Jose, Abdoulaye Gamatie, Julien Ouy and Sandeep K. Shukla, "SMT Based False
Causal loop Detection during Code Synthesis from Polychronous Specifications", FERMAT
Technical Report 2011-04, 2011.

Jens Brandt, Mike Gemunde, Klaus Schneider, Sandeep K. Shukla and Jean-Pierre Talpin,
"Integrating System Descriptions by Clocked Guarded Actions", FERMAT Technical Report
2011-06, 2011.

Bijoy A. Jose, Sandeep K. Shukla, "New Techniques for Sequential Software Synthesis from a
Polychronous Data Flow Formalism", FERMAT Technical Report 2011-07, 2011.

Bijoy A. Jose, Abdoulaye Gamatie, Matthew Kracht and Sandeep K. Shukla, "Improved False
Causal Loop Detection in Polychronous Specification of Embedded Software", FERMAT
Technical Report 2011-08, 2011.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
75

Bibliography
[1] B. A. Jose and S. K. Shukla, “An Alternative Polychronous Model and Synthesis

Methodology for Model-Driven Embedded Software,” Proc. of IEEE Asia and South Pacific
Design Automation Conf. (ASP-DAC 2010), pp. 13–18, January 2010.

[2] B. A. Jose, J. Pribble, L. Stewart, and S. K. Shukla, “EmCodeSyn: A Visual Framework for
Multi-Rate Data flow Specifications and Code Synthesis for Embedded Application,” 12th
IEEE Forum on specification and Design Languages (FDL’09), pp. 1–6, September 2009.

[3] B. A. Jose, J. Pribble, and S. K. Shukla, “An Actor Elimination Technique for Efficient
Embedded Software Synthesis,” To appear in the Proceedings of the International
Conference on Applications of Concurrency in System Design (ACSD’10), Portugal July
2010.

[4] B. A. Jose and S. K. Shukla, “MRICDF : A polychronous Model for Embedded Software
Synthesis,” Chapter in Synthesis of embedded software - frameworks and methodologies for
correctness by construction software design, Springer, November 2010.

[5] ESPRESSO Project, IRISA, “The Polychrony Toolset,” www.irisa.fr/espresso/Polychrony.

[6] A. Gamatié, Designing Embedded Systems with the SIGNAL Programming Language:
Synchronous, Reactive Specification. Springer-Verlag New York, 2009.

[7] B. A. Jose, J. Pribble, and S. K. Shukla, “Technical Report on MRICDF models,”
https://filebox.vt.edu/users/bijoyaj/files/mricdfmodels.pdf, 2010, FERMAT Technical
Report 2010-01.

[8] B. A. Jose, H. D. Patel, S. K. Shukla, and J.-P. Talpin. Generating Multi-Threaded code from
Polychronous Specifications. In Synchronous Languages, Applications, and Programming
(SLAP’08), Budapest, Hungary, April 2008.

[9] B. A. Jose, S. K. Shukla, H. D. Patel, and J.-P. Talpin. On the Deterministic Multi-threaded
Software Synthesis from Polychronous Specifications. In Formal Models and Methods in
Co-Design (MEMOCODE’08), Anaheim, California, June 2008.

[10] B. A. Jose, A. Gamatie, J. Ouy, and S. Shukla. SMT-based false causal loop detection during
code synthesis from polychronous specifications. In MEMOCODE Conference Proceedings,
July 2011.

[11] B. Jose, B. Xue, S. Shukla, and J.-P. Talpin. An analysis of the composition of synchronous
systems. In Proceedings of the 4th International Workshop on Formal Methods for GALS
Design. Elsevier ENTCS, 2009.

http://www.irisa.fr/espresso/Polychrony
https://filebox.vt.edu/users/bijoyaj/files/mricdfmodels.pdf

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
76

[12] G. Kahn. The Semantics of a Simple Language for Parallel Programming. Proc. of
Information Processing, pages 471–475, 1974.

[13] Roberto Lublinerman, Christian Szegedy, and Stavros Tripakis. Modular code generation
from synchronous block diagrams: modularity vs. code size. In Proceedings of the 36th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’09, pages 78–89, New York, NY, USA, 2009, ACM.

[14] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H.C. Cheng.
Composing adaptive software. Computer, 37:56–64, 2004.

[15] Oscar Nierstrasz and Theo Dirk Meijler. Research directions in software composition. ACM
Comput. Surv., 27(2):262–264, 1995.

[16] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software components.
IEEE Transactions on Software Engineering, 28:1056–1076, 2002.

[17] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE,
91(1):112–126, Jan 2003.

[18] F. Boussinot and R. D. Simone, “The ESTEREL language,” Proc. of the IEEE, vol. 79, no.
9, pp. 1293–1304, September 1991.

[19] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The Synchronous Data-Flow
Programming Language LUSTRE,” Proc. of the IEEE, vol. 79, no. 9, pp. 1305–1320,
September 1991.

[20] N. Halbwachs, “Synchronous Programming of Reactive systems,” Kluwer Academic
Publishers, Netherlands, 1993.

[21] J.-P. Talpin, P. L. Guernic, S. K. Shukla, and R. Gupta. A compositional behavioral
modeling framework for embedded system design and conformance checking. Int. J.
Parallel Program., 33(6):613–643, 2005.

[22] Microsoft Research. What Really Happened on Mars? http://research.microsoft.com/en-
us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html.

[23] ABC News. Electronic Design Flaw Linked to Runaway Toyotas
http://abcnews.go.com/Blotter/toyota-recall-electronic-design-flaw-linked-toyota-runaway-
acceleration-problems/story? id=9909319 .

[24] Esterel technologies. SCADE Display On-Board the Airbus A380 and A400M
http://www.esterel-technologies.com/technology/success-stories/airbus-display.

[25] SMT Solvers SMT solver page at University of Iowa
http://goedel.cs.uiowa.edu/smtlib/solvers.html.

http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html
http://abcnews.go.com/Blotter/toyota-recall-electronic-design-flaw-linked-toyota-runaway-acceleration-problems/story?
http://abcnews.go.com/Blotter/toyota-recall-electronic-design-flaw-linked-toyota-runaway-acceleration-problems/story?
http://www.esterel-technologies.com/technology/success-stories/airbus-display
http://goedel.cs.uiowa.edu/smtlib/solvers.html

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
77

[26] Bittencourt, G., Combining syntax and semantics through prime form representation. of
Logic and Computation, 18, (2008) 13–33.

[27] Coudert, O. and Madre, J. Implicit and incremental computation of primes and essential
implicant primes of boolean functions. In Proceedings of the 29th ACM/IEEE Design
Automation Conference, (1992) 36-39.

[28] de Kleer, J. An improved incremental algorithm for computing prime implicants.
Proceedings of AAAI-92, San Jose, CA, (1992) 780–785.

[29] Fredkin, E., Trie memory, Communications of the ACM, 3,9 (1960), 490–499.

[30] Jackson, P. Computing prime implicants incrementally. Proceedings of the 11th
International Conference on Automated Deduction, Saratoga Springs, NY, June, 1992. In
Lecture Notes in Artificial Intelligence, Springer-Verlag, Vol. 607 (1992) 253-267.

[31] Jackson, P. and Pais, J., Computing prime implicants. Proceedings of the 10th International
Conference on Automated Deductions, Kaiserslautern, Germany, July, 1990. In Lecture
Notes in Artificial Intelligence, Springer-Verlag, Vol. 449 (1990), 543-557.

[32] Kean, A. and Tsiknis, G. An incremental method for generating prime implicants/implicates.
Journal of Symbolic Computation 9 (1990), 185-206.

[33] Manquinho, V.M., Flores, P.F., Silva, J.P.M. and Oliveira, A.L. Prime implicant
computation using satisfiability algorithms. of the International Conference on Tools with
Artificial Intelligence, Newport Beach, U.S.A., November, 1997", 232–239.

[34] A. Matusiewicz, N.V. Murray and E. Rosenthal. Prime implicate tries. Proceedings of the
International Conference TABLEAUX 2009 - Analytic Tableaux and Related Methods, Oslo,
Norway, July 2009. Lecture Notes in Artificial Intelligence, Springer-Verlag. Vol. 5607,
250-264.

[35] A. Matusiewicz, N.V. Murray, and E. Rosenthal. Trie-based subsumption and improving the
pi-trie algorithm. In Workshop on Practical Aspects of Automated Reasoning. (Part of
IJCAR 2010 within FLoC 2010), Edingurgh, UK, July 2010., 2010.

[36] A. Matusiewicz, N.V. Murray, and E. Rosenthal. Tri-based set operations and selective
computation of prime implicates. In Proc. International Symposium on Methodologies for
Intelligent Systems - ISMIS, Warsaw, Poland, June, 2011, 2011. Lecture Notes in Artificial
Intelligence, Springer-Verlag. Vol 6804, 203-213.

[37] Morrison, D.R. PATRICIA — practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM, 15,4, 514–34, 1968.

[38] Ngair, T. A new algorithm for incremental prime implicate generation. Proc of IJCAI-93,
Chambery, France, (1993).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
78

[39] Ramesh, A., Becker, G. and Murray, N.V. CNF and DNF considered harmful for computing
prime implicants/implicates. Journal of Automated Reasoning 18,3 (1997), Kluwer, 337–
356.

[40] Reiter, R. and de Kleer, J. Foundations of assumption-based truth maintenance systems:
preliminary report. Proceedings of the 6th National Conference on Artificial Intelligence,
Seattle, WA, (July 12-17, 1987), 183-188.

[41] Slagle, J. R., Chang, C. L. and Lee, R. C. T. A new algorithm for generating prime
implicants. IEEE transactions on Computers C-19(4) (1970), 304-310.

[42] Strzemecki, T. Polynomial-time algorithm for generation of prime implicants. Journal of
Complexity 8 (1992), 37-63.

[43] De Alfaro, L., Henzinger, T. A. “Interface theories for component-based design”.
International Workshop on Embedded Software. Lecture Notes in Computer Science v.
2211. Springer-Verlag, 2001.

[44] The yices smt solver - b. dutertre and l. de moura, http://yices.csl.sri.com/.

[45] P. Amagbégnon, L. Besnard, and P. Le Guernic. Implementation of the data-flow
synchronous language signal. In Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementation, PLDI ’95, pages 163–173, New York,
NY, USA, 1995, ACM.

[46] A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asynchrony. In J. Baeten
and S. Mauw, editors, CONCURÃ‚â™99 Concurrency Theory, volume 1664 of Lecture
Notes in Computer Science, pages 776–776. Springer Berlin / Heidelberg, 1999.

[47] A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in dataflow synchronous
languages: specification and distributed code generation. Inf. Comput., 163:125–171,
November 2000.

[48] T. Gautier, P. L. Guernic, and L. Besnard. Signal: A declarative language for synchronous
programming of real-time systems. In Proc. of a conference on Functional programming
languages and computer architecture, pages 257–277, London, UK, 1987, Springer-Verlag.

[49] J. Ouy, J.-P. Talpin, L. Besnard, and P. Le Guernic. Separate compilation of polychronous
specifications. Electron. Notes Theor. Comput. Sci., 200:51–70, February 2008.

[50] D. Potop Butucaru, B. Caillaud, and A. Benveniste. Concurrency in Synchronous Systems.
Formal Methods in System Design, 28:111–130, 2006.

[51] F. Remondino and N. Borlin. Polylib - a library of polyhedral functions. In Int. Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIV, H.-G.
Maas and D. Schneider (Eds), 2004.

http://yices.csl.sri.com/

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
79

[52] J.-P. Talpin and P. Guernic. An algebraic theory for behavioral modeling and protocol
synthesis in system design. Form. Methods Syst. Des., 28:131–151, March 2006.

[53] J.-P. Talpin, J. Ouy, L. Besnard, and P. Le Guernic. Compositional design of isochronous
systems. In Proceedings of the conference on Design, automation and test in Europe, DATE
’08, pages 928–933, New York, NY, USA, 2008, ACM.

[54] R.Tamassia. Handbook of Graph Drawing and Visualization (Discrete Mathematics and Its
Applications). Chapman & Hall/CRC, 2007.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
80

List of Symbols, Abbreviations and Acronyms

3-CNF – 3-conjunctive normal form

ADC – analog-to-digital converter

AFRL – Air Force Research Laboratory

APM – Ardupilot Mega

AUTOSAR – Automotive Open System Architecture

CAN – Controller area network

CFG – Control Flow Graph

CTS – C to SIGNAL

dag – directed acyclic graph

ECU – engine control unit

EmCodeSyn – Embedded Code Synthesis

GCC – GNU Compiler Collection

GNU – GNU’s Not Unix

GPS – Global Positioning System

iff – if and only if

IMU – Inertial Measurement Unit

INRIA – Institut National de Recherche en Informatique et Automatique

LIN – local interconnect network

MRICDF – Multi-Rate Instantaneous Channel Connected Data Flow Actor Model

NP-Hard – Non-deterministic polynomial time hard

OASD(R&E) – Office of the Assistant Secretary of Defense for Research and Development

OSD – Office of the Secretary of Defense

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
81

PI – Prime Implicate

PWM – Pulse Width Modulated

RC – radio control

SAT - Satisfiability

SMT – SAT Modulo Theory

SSA – Static Single Assignment

UAV – Unmanned Aerial Vehicle

USART – Universal Synchronous-Asynchronous Receiver/Transmitter

USB – Universal Serial Bus

V&V – Verification and Validation

	Table of Contents
	List of Figures
	Foreword
	Preface
	Acknowledgement
	1 Summary
	1.1 Major Highlights
	1.2 Disappointments

	2 Introduction
	2.1 Motivation
	2.1.1.1 Impact and Transformative Potential

	2.2 Structuring of the Reported Results
	2.3 Statement of Work from the Original Proposal

	3 Methods, Assumptions and Procedures
	3.1 Programming Model, and Synthesis Technique
	3.2 Boolean Theory and Prime Implicates

	4 Results and Discussion
	4.1 Development of Behavioral Type for a Software component
	4.1.1 Development of a theory of type for temporal behavior at the interface of a software Component
	4.1.1.1 Preliminary Definitions
	4.1.1.2 Compilability of Processes – Endochrony and Weak-Hierarchy
	4.1.1.3 Non blockage of weak-hierarchic composition
	4.1.1.4 Clock Checking – Isochrony

	4.1.2 Develop methods for behavioral type extraction from MRICDF specification of a software component
	4.1.2.1 Problems
	4.1.2.2 Solution
	4.1.2.3 Anticipated problems and future work
	4.1.2.4 Extended Report: Develop methods for behavioral type extraction from MRICDF specification of a software component
	4.1.2.5 Anticipated problems and Future work

	4.1.3 Develop methods for behavioral type extraction from C code
	4.1.3.1 Work Completed
	4.1.3.2 Anticipated problems and future work
	4.1.3.3 Extended Report: Automatic Conversion of C code to SIGNAL code
	4.1.3.3.1 C to SSA conversion
	4.1.3.3.2 SSA to SIGNAL conversion
	4.1.3.3.3 SSA Blocks
	4.1.3.3.4 Assignment Statements
	4.1.3.3.5 PHI function
	4.1.3.3.6 Conditional statements
	4.1.3.3.7 Buffered values
	4.1.3.3.8 Code Examples
	4.1.3.3.8.1 If else
	4.1.3.3.8.2 Nested if else
	4.1.3.3.8.3 While loop

	4.1.3.4 Extended Report: Automatic Conversion of C code to SIGNAL code, March 2012 update
	4.1.3.4.1 Introduction
	4.1.3.4.2 SSA To SIGNAL Conversion
	4.1.3.4.3 SSA Blocks
	4.1.3.4.4 PHI function
	4.1.3.4.5 Conditional statements
	4.1.3.4.6 Code Example

	4.2 Development of Behavioral Type Inference Algorithm as a proof technique for Trustworthy composition
	4.2.1 Reduction of behavioral type inference to Prime Implicate extraction problem.
	4.2.1.1 Semantic of the problem
	4.2.1.1.1 Polychronous Elements
	4.2.1.1.2 The Process and its logical Interpretations

	4.2.1.2 Clock tree decomposition using Prime Implicate theory
	4.2.1.2.1 Finding the Master trigger of a specification
	4.2.1.2.2 Finding sets of partial triggers of a specification
	4.2.1.2.3 Scheduling the threads

	4.2.1.3 Shared Epoch
	4.2.1.4 Distribution of events into threads
	4.2.1.5 Algorithm

	4.2.1.6 Non blockage of weak-hierarchic composition

	4.2.2 Investigate if SAT Modulo Theory (SMT) techniques will refine behavioral Types
	4.2.2.1 Problems
	4.2.2.2 Investigated Methods
	4.2.2.3 Anticipated problems and future work
	4.2.2.4 Extended Report: Investigate if SAT Modulo Theory (SMT) or other decision making techniques will refine behavioral Types
	4.2.2.5 SMT based safety property checking
	4.2.2.5.1 Limitations of this approach

	4.2.2.6 Polyhedra based safety property checking
	4.2.2.6.1 Constraint Extraction and Transformation for Polyhedral analysis
	4.2.2.6.2 Polyhedral Analysis
	4.2.2.6.3 Limitation of Polyhedral libraries
	4.2.2.6.4 Safe code synthesis using Wrapper

	4.3 Tool development work
	4.3.1 EmCodeSyn improvement
	4.3.1.1 Simcdf: Simulink models to MRICDF import
	4.3.1.2 Sigcdf: SIGNAL to MRICDF import

	4.3.2 CTS Tool

	4.4 Implementation of Behavioral type interference algorithm
	4.5 Development of Prime Implicate extraction algorithms
	4.5.1 Introduction
	4.5.2 Computational Advances
	4.5.2.1 Leaving the Original Algorithm
	4.5.2.2 Filters and Search Space Reduction
	4.5.2.3 Decomposition
	4.5.2.4 Dynamic Programming
	4.5.2.5 Graph-Based Analysis of MRICDF Theories

	4.6 Case Study
	4.6.1 Case Study Examples
	4.6.1.1 ArduPilot System Description
	4.6.1.2 Ardupilot Software
	4.6.1.3 Case study examples on Ardupilot

	4.6.2 EmCodeSyn as a Code Generation Tool for an UAV
	4.6.2.1 Introduction
	4.6.2.2 Hardware Components
	4.6.2.2.1 ArdupilotMega (APM) Micro-controller Board
	4.6.2.2.2 IMU Sensor Board
	4.6.2.2.3 Radio Control Transmitter and Receiver
	4.6.2.3 Work Progress

	4.6.3 AutoSAR
	4.6.3.1 System Description
	4.6.3.2 Arctic Core Software
	4.6.3.3 Arctic Core Example
	4.6.3.4 Error Detection

	4.6.4 Results of the Study

	5 Some Paths Unexplored – Some Blind Alleys
	5.1 Affine Clock Relation based Interface Types
	5.2 Autosar Platform Modeling Issues
	5.3 Ardupilot Platform Modeling Issues
	5.3.1 Interface Variable
	5.3.2 Typecasting
	5.3.3 System Calls
	5.3.4 Cyclic Function Calls
	5.3.5 Final Implementation

	6 Conclusions & Recommendations
	Appendix: Dissertations and technical reports supported by the project
	Bibliography
	List of Symbols, Abbreviations and Acronyms

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

